• 제목/요약/키워드: oscillatory injection

검색결과 8건 처리시간 0.023초

Groutability enhancement by oscillatory grout injection: Verification by field tests

  • Kim, Byung-Kyu;Lee, In-Mo;Kim, Tae-Hwan;Jung, Jee-Hee
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2019
  • Grout injection is mainly used for permeability reduction and/or improvement of the ground by injecting grout material into pores, cracks, and joints in the ground. The oscillatory grout injection method was developed to enhance the grout penetration. In order to verify the level of enhancement of the grout, field grout injection tests, both static and oscillatory tests, were performed at three job sites. The enhancement in the permeability reduction and ground improvement effect was verified by performing a core boring, borehole image processing analysis, phenolphthalein test, scanning electron microscopy analysis, variable heat test, Lugeon test, standard penetration test, and an elastic wave test. The oscillatory grout injection increased the joint filling rate by 80% more and decreased the permeability coefficient by 33-68%, more compared to the static grout injection method. The constrained modulus of the jointed rock mass was increased by 50% more with oscillatory grout injection compared to the static grout injection, indicating that the oscillatory injection was more effective in enhancing the stiffness of the rock mass.

초음속 주유동에 수직 분사되는 제트의 비정상 수치해석 (Unsteady Numerical Analysis of Transverse Injection Jet into Supersonic Mainstream)

  • 최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.126-131
    • /
    • 2003
  • A series of computational simulations have been carried out for supersonic flows in a scram jet engine with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure varying from 0.5 to 1.5 MPa. The corresponding equivalence ratios are 0.167 - 0.50. The work features detailed resolution of the flow dynamics in the combustor, which was not typically available in most of the Previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between shock waves and shear layer may cause a large excursion of flow oscillation. The role of the cavity and injection pressure are examined systematically.

  • PDF

초음속 연소기 내의 연소 불안정 메커니즘 (Mechanism of Combustion Instability in Supersonic Combustor)

  • 최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2003
  • A series of computational simulations have been carried out for non-reacting and reacting flows in a supersonic combustor configuration with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure of 0.5 and 1.0 ㎫. The corresponding equivalence ratios are 0.17 and 0.33. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The role of the cavity, injection pressure, and amount of heat addition are examined systematically.

  • PDF

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

스크램제트 연소기의 비정상 연소현상 (Unsteady Combustion Phenomena in Scramjet Combustor)

  • 최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.364-367
    • /
    • 2005
  • 공동이 있거나 없는 일정 단면적 및 확장형 스크램제트 연소기 내에 수소 연료가 $0.5\sim1.5\;MPa$ 로 수직 분사되는 것을 고려하여 연소 및 동결 유동에 대한 일련의 수치해석을 수행 하였다. 내재된 물리 과정을 규명하기에 충분한 정확도로 진동하는 유동 및 화염의 동적 특성을 포착하였으며, 이로부터 연소기의 형상과, 공동 및 발열량의 영향을 이해할 수 있었다.

  • PDF

질량분사가 있는 덕트 난류유동의 LES 해석 (LES for Turbulent Duct Flow with Surface Mass Injection)

  • 김보훈;나양;이창진
    • 한국항공우주학회지
    • /
    • 제39권3호
    • /
    • pp.232-241
    • /
    • 2011
  • 하이브리드 로켓은 난류 산화제 유동과 고체 추진제의 기화로 인한 분사 유동 사이의 상호 작용에 의해 복잡한 형태의 혼합 전단층이 존재한다는 특별한 성질을 가지고 있다. 본 논문에서는 유동 간섭에 의해 표면에서 발생하는 진동 유동의 물리적 특성을 연구하기 위하여 압축성 효과를 고려한 질량분사가 있는 덕트 유동의 LES(Large Eddy Simulation) 해석을 수행하였다. 계산 결과에 따르면, 기화 질량이 분출됨에 따라 주유동방향 와류의 특성이 강해지고 국부적으로 발생하는 역류 현상을 근거로 벽면 근방에서 원주방향 와류가 생성됨을 확인하였다. 그리고 시간 특성을 갖고 나타나는 와류 흘림 현상은 혼합 전단층에 기인한 유동 불안정성에 의해 촉진되었으며, 분출유동에 의해 발달한 고유 진동 유동을 의미하는 압력 섭동의 특정 진동수가 $\omega$=8.8에서 검출됨을 확인하였다.

가스터빈 연소기내 2차연료분사에 의한 연소 불안정성의 제어 (Control of Combustion Instabilities in a Gas Turbine Combustors Through Secondary Fuel Injection)

  • 전충환
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.59-69
    • /
    • 1998
  • The results of study on the active control of naturally occurring combustion oscillations with a single dominant frequency in an atmospheric dump combustor are presented. Control was achieved by an oscillatory infection of secondary fuel at the dump plane. A high speed solenoid valve with a maximum frequency of 250Hz was used as the actuator and a sound level meter, located at the combustor exit, measured the pressure fluctuations which served as the feedback signal for the control loop. Instability characteristics were mapped over a range of mean mixing section velocities from 6.7 m/s-9.3 m/s and with three mixing conditions. Different fuel/air mixing conditions were investigated by introducing varying percentages of primary fuel at two locations, one at the entrance to the mixing section and one 6 mixing tube diameters upstream of the dump plane. Control studies were conducted at a mean velocity of 9.3 m/s, with an air temperature of $415^{\circ}C$, and from flame blowout to the stoichiometric condition.

  • PDF

공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석 (Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity)

  • Jeong-Yeol Choi;Vigor Yang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF