• Title/Summary/Keyword: oscillations

Search Result 957, Processing Time 0.026 seconds

Numerical Methods for Wave Response in Harbor (항만내의 파도 응답에 관한 수치 계산)

  • D.J.,Kim;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.3-12
    • /
    • 1988
  • A natural or an artificial harbor can exhibit frequency(or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damage to moored ships and adjacent structures. This can also induce undesirable current in harbors. Many previous investigators have studied various aspects of harbor resonance problem. In the percent paper, both a localizes finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The present method(LFEM) shows computationally more efficient than the integral equation method. Our test results shows good agreement compared with other results. This enhanced computational efficiency is due to the fact that the present method gives a banded symmetric coefficients matrix and requires much less computational time in the calculation of the influence coefficients matrix than the integral equation method involved with Green's function. To test the present numerical scheme, two models are treated here. The present method(LFEM) can be extended to a fully three dimensional harbor problem with the similar computational advantage.

  • PDF

On the Study of Intraseasonal and Interannual Oscillations Simulation by using Coupled Model (접합모형을 이용한 경년 및 계절안 진동 모사실험 연구)

  • Ahn Joong-Bae
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.645-652
    • /
    • 1999
  • In order to simulate and investigate the major characteristics of El Nino/Southern Oscillation(ENSO) and Madden Jullian Oscillation(MJO), an intermediate type atmosphere-ocean coupled model is developed and their results are examined. The atmosphere model is a time-dependent non-linear perturbation moist model which can determine the internal heating for itself. The counterpart of the atmosphere model is GCM-type tropical ocean model which has fine horizontal and vertical grid resolutions. In the coupled experiment, warm SST anomaly and increased precipitation and eastward wind and current anomalies associated with ENSO and MJO are properly simulated in Pacific and Indian Oceans. In spite of some discrepancies in simulation MJO, the observed atmospheric and oceanic low-frequency characteristics in the tropics are successfully identified. Among them, positive SST anomalies centered at the 100m-depth of tropical eastern-central Pacific due to the eastward advection of warm water and reduced equatorial upwelling, and negative anomalies in the Indian and western Pacific seem to be the fundamental features of tropical low-frequency oscillations.

  • PDF

Field Observation and Analysis of Subspan Oscillatron in 4 Bundled Conductor Transmission Lines (가공송전선로의 서브스판 진동에 대한 실험 및 실측 분석)

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Lee, Dong-Il;Min, Byoung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.525-527
    • /
    • 2003
  • This paper presents a collection of a number of observations made on 4 bundled conductor transmission lines concerning the behaviour of conductors under the effect of natural winds. Namely in order to know the wind-induced vibration status and study wind-induced vibrations have been recorded and analyzed form the real transmission lines. By the field observation and analysis results, subspan oscillations among the wind-induced vibrations is known to be the main type of the vibrations. And some common characteristics of the observation sites, which have had high maintenance rate, can be found from the data also. It is considered that the main results described in this paper will be useful data and be used in controlling the subspan oscillations and protecting the conductors.

  • PDF

MAGNETO-OPTICAL INVESTIGATION OF LOW-DEMENSIONAL MAGNETIC STRUCTURES

  • Shalyguina, E.E.;Kim, Cheol-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.13-16
    • /
    • 2003
  • Magnetic and magneto-optical properties of Fe/Pt/Fe, Co/Pd/Co trilayers and also the sandwiches with wedge-shaped magnetic (Fe, Co) and nonmagnetic (Pt, Pd) layers were investigated. The oscillatory behavior of the saturation field $H_{s}$ of the studied trilayers with changing the thickness of the nonmagnetic layer (NML) $t_{NML}$ was revealed. That was explained by the exchange coupling between ferromagnetic layers (FML) through the nonmagnetic spacer. For the first time, oscillations of the transverse Kerr effect (TKE) with changing the Pt- and Pd-wedge thickness were discovered. Period of these oscillations was found to depend on the FML thickness and the photon energy of the incident light. TKE spectra of the examined samples were discovered to modify very strongly with increasing $t_{NML}$. The discovered peculiarities of magneto-optical properties of thin-film systems were explained by a concept of the spin-polarized quantum well states in the pt and Pd layers.

  • PDF

A Study on the Installation method of the Spacer Damper for Bundled T/L (송전선로 스페이서댐퍼 적정 설치방안 연구)

  • Lee, H.K.;Sohn, H.K.;Lee, D.I.;Wi, H.B.;Park, W.D.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.436-438
    • /
    • 2003
  • Wind-induced oscillations are known to cause damage to the conductors and related hardware through fatigue, clashing of the bundled conductors and bolt loosening. Wake-induced oscillations have been known since the advent of bundled conductors, they are caused by aerodynamically unstable forces acting on the leeward conductors in the wake of the windward conductors, They take the form of horizontal galloping, snaking or rolling, in which case all subconductors move together in unison. They can also take the form of the subspan oscillation, which appear as elliptical motions of the subconductors moving out of phase, mainly in the horizontal plane within a subspan. In order to decrease amplitudes of the oscillation, this paper examines the application status of the spacer dampers and suggests proper installation methods.

  • PDF

Evaluation of Convection Schemes for Thermal Hydraulic Analysis in a Liquid Metal Reactor (액체금속로 내부 열유동해석을 위한 대류항처리법 평가)

  • Choi Seok-Ki;Kim Seong-O;Kim Eui-Kwang;Eoh Jae-Hyuk;Choi Hoon-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.64-69
    • /
    • 2002
  • A numerical study has been peformed for evaluation of convection schemes for thermal hydraulic analysis in a liquid metal reactor Four convection schemes, HYBRID, QUICK, SMART and HLPA included in the CFX-4 code are considered. The performances of convection schemes are evaluated by applying them to the five test problems. The accuracy, stability and convergence are tested. It is shown that the HYBRID scheme is too diffusive, and the QUICK scheme exhibits overshoots and undershoots, and the SMART scheme shows convergence oscillations, and the HLPA scheme preserves the boundedness without causing convergence oscillations. The accuracies of SMART, QUICK and HLPA schemes are comparable. Thus, the use of HLPA scheme is highly recommended for thermal hydraulic analysis in a liquid metal reactor.

  • PDF

Nonlinear Dynamics of Homogeneous Azeotropic Distillations

  • Lee, Moonyong;Cornelius Dorn;Manfred Morari
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.461-467
    • /
    • 1998
  • In spite of significant nonlinearities even in the simplest model, some types of steady-state and dynamic behavior common for nonlinear systems have never been associated with distillation columns. In recent years, multiplicity of steady states has been a subject of much research and is now widely accepted. Subsequently, stability of steady states has been explored. Another phenomenon that. although widely observed in chemical reactors, has not been associated with models of distillation columns is the existence of periodic oscillations. In this article we study the steady-state and dynamic behavior of the azeotropic distillation of the ternary homogeneous system methanol-methyl butyrate-toluene. Our simulations reveal nonlinear behavior not reported in earlier studies. Under certain conditions, the open-loop distillation system shows a sustained oscillation associated with branching to periodic solutions. The limit cycles are accompanied by traveling waves inside the column. Significant underdamped oscillations are also observed over a wide range of product rates.

  • PDF

A Feedback Control System for Suppressing Crane Oscillations with On-Off Motors

  • Hekman, Keith A.;Singhose, William E.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.223-233
    • /
    • 2007
  • Crane payloads frequently swing with large amplitude motion that degrades safety and throughput. Open-loop methods have addressed this problem, but are not effective for disturbances. Closed-loop methods have also been used, but generally require the speed of the driving motors to be precisely controlled. This paper develops a feedback control method for controlling motors to cancel the measured payload oscillations by intelligently timing the ensuing on and off motor commands. The effectiveness of the oscillation suppression scheme is experimentally verified on an industrial bridge crane.

Power System Oscillations Damping Using UPFC Based on an Improved PSO and Genetic Algorithm

  • Babaei, Ebrahim;Bolhasan, Amin Mokari;Sadeghi, Meisam;Khani, Saeid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, optimal selection of the unified power flow controller (UPFC) damping controller parameters in order to improve the power system dynamic response and its stability based on two modified intelligent algorithms have been proposed. These algorithms are based on a modified intelligent particle swarm optimization (PSO) and continuous genetic algorithm (GA). After extraction of UPFC dynamic model, intelligent PSO and genetic algorithms are used to select the effective feedback signal of the damping controller; then, to compare the performance of the proposed UPFC controller in damping the critical modes of a single-machine infinite-bus (SMIB) power system, the simulation results are presented. The comparison shows the good performance of both presented PSO and genetic algorithms in an optimal selection of UPFC damping controller parameters and damping oscillations.

MULTI-WAVELENGTH FIBRIL DYNAMICS AND OSCILLATIONS ABOVE SUNSPOT WAVE PROPAGATION

  • MUMPUNI, EMANUEL S.;HERDIWIJAYA, DHANI;DJAMAL, MITRA;DJAMALUDDIN, THOMAS
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.59-60
    • /
    • 2015
  • High resolution, multi-wavelength images from the Dutch Open Telescope were used to study the detailed mechanisms that might be involved in the multiple layer solar atmosphere observed in high cadence multi-wavelength observations. With the exceptional data observed for active region NOAA 10789 on 2005 July 13th, we study the changing pattern of the fibril using multi-wavelength tomography of the $H{\alpha}$ line center and blue wing, Ca II H, and the G Band. It is believed that a long fibril that is rooted in the umbra, with longer apparent periodicity, may be due to morphological changes. To determine this, we conduct phase difference and coherency analysis between points along the fibril to understand how the wave propagates.