• 제목/요약/키워드: oscillation mode

검색결과 306건 처리시간 0.039초

The Characteristics of Magnetic Oscillations in L-H Transition and Disruption in JFT-2M Tokamak

  • Oh, Byung-Hoon;Lee, Kwang-Won;Kim, Sung-Kyu
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.432-437
    • /
    • 1996
  • The observed characteristics of magnetic oscillations in L-H transition and disruption are described. Two kinds of MHD magnetic probes are used in order to cover broadband frequency range from 1.3 kHz to 300 kHz in the H-mode. Depending on the probe's position and frequency, different characteristics are observed. Precursor like oscillation in L-H transition, and the difference between sawtooth and ELM are discussed. All disruptions during the current rising phase are related with m=2 or m=3 mode. Different disruption characteristics for different operation conditions could be found in the MHD probes.

  • PDF

Nonlinear Canonical Correlation Analysis of the Korea Precipitaiton with Sea Surface Temperature near East Asia

  • 김광섭;순밍동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1620-1624
    • /
    • 2010
  • The NLCCA has been applied to analyze the East Asia sea surface temperature (SST) and Korea monthly precipitation, where the eight leading PCs of the SST and the eight PCs of the precipitation during 1973-2007 were inputs to an NLCCA model. The first NLCCA mode is plotted in the PC spaces of the Korea precipitation and the world SST present a curve linking the nonlinear relationship between the first three leading PCs of Korea precipitation and world SST forthright. The correlation coefficient between canonical variate time series u and v is 0.8538 for the first NLCCA mode. And there are some areas' climate variability have higher relationship with Korea precipitation, especially focus on the north of East Sea' climate variability have represented the higher canonical correlation with Korea precipitation, with the correlation coefficient is 0.871 and 0.838. Likewise in Korea, most stations display similarly uniform distributing characteristic and less difference, in particular the inshore stations have display identical distributing characteristic. In correlation variables' scores, the fluctuation and variation trend are also seasonal oscillation with high frequency.

  • PDF

전자빔 다이오드 구조개선에 의한 대전력 후진파발진기의 구현 (Implementation of a High Power Backward Wave Oscillator on Electron Beam Diode Structure Improvement)

  • 김원섭
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.897-903
    • /
    • 2009
  • We have designed the backward wave oscillator. A power-pulsed generator oscillated at 24 GHz has higher frequency than current one. It is very inportant to prevent microwave from going into the beam diode, since intence microwave will harmfully affect beam generation. Due to the axial mode operation, there exist a critial value of beam energy for the oscillation. By changing the condition at the SWS end, an enhanced performance of the K-band oversized BWO is observed in a low magnetic field region about 0.8T.

압전회전작동기를 이용한 스텝모터에 관한 연구 (Research for Step Motor using Piezoelectric Torsional Actuator)

  • 김준혁;정달도;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.279-282
    • /
    • 2004
  • In this paper, A new type of piezoelectric step motor using piezoelectric torsional actuator and a pair of one-way clutch bearing is designed, manufactured and tested. The torsional actuator consists of 16-polygonal tube that can produce angular displacement using shear mode of piezoceramic. One-way clutch bearing convert oscillation of torsional actuator into continuous rotation. After performance testing of torsional actuator, the optimum condition for driving motor is investigated in terms of wave shape, excitation frequency and electrical field. The performance of the motor is experimentally evaluated. As a result, square wave has larger rotation speed than sin wave, and the maximum rotation speed of 57 rpm is measured at 3850 Hz and 100V/mm.

  • PDF

Sausage Waves in a Plasma Cylinder with a Surface Current

  • Lim, Daye;Nakariakov, Valery M.;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.81.1-81.1
    • /
    • 2019
  • Linear sausage oscillations of a cylinder embedded in a plasma with an azimuthal magnetic field, created by a current on the surface of the cylinder, are studied. Such a plasma configuration could be applied to modelling demonstrate that the lowest radial harmonic of the sausage mode is in the trapped regime for all values of the parallel wave number. In the long-wavelength limit, phase and group speeds of this mode are equal to the Alfven speed in the external medium. It makes the oscillation period to be determined by the ratio of the parallel wavelength, e.g., double the length of an oscillating loop, to the external Alfven speed, allowing for its seismological estimations. The application of the results obtained to the interpretation of long-period (longer than 20-30 s) oscillations of emission intensity detected in solar coronal structure, gives reasonable estimations of the external Alfven speed. Cutoff values of the parallel wavenumber for higher radial harmonics are determined analytically. Implications of this finding to the observational signatures of fast magnetoacoustic wave trains guided by the plasma non-uniformity are discussed.

  • PDF

발전용 저 NOx 가스터빈의 연소 불안정 안정화에 관한 연구 (Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation)

  • 정재모;안달홍;박정규
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.144-151
    • /
    • 2004
  • 희박 예혼합 연소방식을 채용한 150MW급 대형 저 NOx 가스터빈 연소기에서 발생하는 급격한 연소진동 발생을 저감하였다. 희박 예혼합 연소기에서는 연소튜닝이 적절히 이루어지지 많은 경우에 연소불안정에 기인한 높은 연소진동의 발생과 함께 NOx 배출량이 높아질 가능성이 있다. 대상 가스터빈의 연소 모드 전환 중에 발생하는 연소진동의 주파수와 크기는 각각 80Hz및 4-9psi로 나타났으며, 대기온도가 낮아짐에 따라 연소진동의 크기가 증가하는 경향을 보였다. 연소진동에 영향을 미치는 인자로서 버너노즐로 공급되는 연료유량을 균등화하기 위한 연소튜닝과 연소모드 전환시 연료라인에 연료를 미리 공급(prefilling)하는 것이 화염안정에 매우 큰 효과가 있었다. 그 결과 연소모드 전환 중에 발생하는 연소진동을 2.5psi까지 저감할 수 있었으며, 150 MW기저부하 운전 중에 NOx 발생량을 35-43ppm(15% $O_2$)으로 유지할 수 있었다.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

대심도 지하관로 배수 시스템의 서어징 현상에 관한 연구 (Study of Surges in a Large-Diameter Subteranean Diversion Channel with Multiple Surge Tanks)

  • 정광근;여운식;안태진
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.757-768
    • /
    • 1998
  • 6개의 수조와 1개의 펌프장을 갖고 있는 대심도 지하관로 배수시스템에서 발생하는 복잡한 서어징 현상을 강체수주이론에 의한 비선형 상태방정식에 의해서 해석하였다. 상태방정식은 각 수조에서의 유량연속방정식과 비선형항을 갖는 지하관로의 운동 방정식으로부터 구성된다. 홍수의 유입량과 펌프의 유출량을 장방형 펄스(pulse)로 하고 유출유량과 전유입유량이 같다고 한다면 비선형 상태방정식에 의한 각 수조수위의 진동은 선형화 방정식에 의한 결과와 잘 일치 하고 있다. 이것은 관로저항의 영향이 적고 이것을 무시한 자유진동해석이 타당하다는 것을 나타내는 것이다. 자유진동 방정식은 6개의 고유모드를 갖는다. 그 중 하나는 강체모드이며 유출유량이 전유입유량과 다를 때에 나타나며 이러한 6개의 고유모드는 유입유출조건에 의해서 여러 가지 서어징 현상을 구성한다. 강체모드가 존재하기 때문에 실제의 홍수 유입량에 대응한 고도의 펌프운전이 요구된다.

  • PDF

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.