• Title/Summary/Keyword: oscillation in water

Search Result 200, Processing Time 0.023 seconds

Review of Application of VOF-Based NWT on Integrated OWC System (VOF 기반의 수치조파수조를 이용한 OWC 통합시스템 성능연구에 대한 고찰)

  • Liu, Zhen;Jin, Ji-Yuan;Hyun, Beom-Soo;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2012
  • Oscillating water column is the most widely used ocean energy converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to consider the effects of the turbine, the orifice model are carried out. The VOF based Numerical Wave Tank (NWT) is utilized to simulate the water column oscillation inside the chamber and the results are compared with corresponding experimental data. This paper reviews the state of the art in interaction among wave elevation inside the chamber and air flow rate in the duct, which are considered the turbine effects. Effects of incident wave conditions and several shape parameters on the operating performance of OWC chamber are investigated numerically. The effects of the impulse turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated.

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

Dynamic characteristics between waves and a floating cylindrical body connected to a tension-leg mooring cable placed in a simulated offshore environment

  • Song, Juhun;So, Soo-Hyun;Lim, Hee-Chang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.375-385
    • /
    • 2016
  • Given the rapid progress made in understanding the dynamics of an offshore floating body in an ocean environment, the present study aimed to simulate ocean waves in a small-sized wave flume and to observe the motion of a cylindrical floating body placed in an offshore environment. To generate regular ocean waves in a wave flume, we combined a wave generator and a wave absorber. In addition, to precisely visualise the oscillation of the body, a set of light-emitting diode illuminators and a high-speed charge-coupled device camera were installed in the flume. This study also focuses on the spectral analysis of the movement of the floating body. The wave generator and absorbers worked well to simulate stable regular waves. In addition, the simulated waves agreed well with the plane waves predicted by shallow-water theory. As the period of the oncoming waves changed, the movement of the floating body was substantially different when tethered to a tension-leg mooring cable. In particular, when connected to the tension-leg mooring cable, the natural frequency of the floating body appeared suddenly at 0.391 Hz as the wave period increased.

Analysis of drought in Northwestern Bangladesh using standardized precipitation index and its relation to Southern oscillation index

  • Nury, Ahmad Hasan;Hasan, Khairul
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.58-68
    • /
    • 2016
  • The study explored droughts using the Standardized Precipitation Index (SPI) in the northwestern region of Bangladesh, which is the drought prone area. In order to assess the trend and variability of monthly rainfall, as well as 3-month scale SPI, non-parametric Mann-Kendall (MK) tests and continuous wavelet transform were used respectively. The effect of climatic parameters on the drought in this region was also evaluated using SPI, with the Southern Oscilation Index (SOI) by means of the wavelet coherence technique, a relatively new and powerful tool for describing processes. The MK test showed no statistically significant monthly rainfall trends in the selected stations, whereas the seasonal MK test showed a declining rainfall trend in Bogra, Ishurdi, Rangpur and Sayedpur stations respectively. Sen's slope of six stations also provided a decreasing rainfall trend. The trend of the SPI, as well as Sen's slope indicated an increasing dryness trend in this area. Dominant periodicity of 3-month scale SPI at 8 to 16 months, 16 to 32 months, and 32 to 64 months were observed in the study area. The outcomes from this study contribute to hydrologists to establish strategies, priorities and proper use of water resources.

Slip-resistant bolted connections under freeze-thaw cycles and low temperature

  • A. Fuente-Garcia;M.A. Serrano-Lopez;C. Lopez-Colina;F., Lopez-Gayarre
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.251-262
    • /
    • 2023
  • There are many examples of steel structures subjected to severe environmental conditions with bolted connections directly exposed to extreme climatic agents such as freeze-thaw cycles or low temperatures. Some examples are: steel bridges, mining transfer towers, wind towers... These service conditions neither are included in Eurocode 3 or EN1090-2, nor there are references in other international standards. In this experimental research, 46 specimens of non-slip joints with HV M20 bolts and four different types of contact surfaces have been studied. Half of the specimens were subjected to fourteen twelve-hours freeze-thaw cycles, with periodic immersion in water and temperature oscillation. Subsequently, half of the connections were subjected to a slip test under monotonic load at temperature of -20 ± 0.5 ℃ and the other half at room temperature. The results were compared with others equal joints not subjected to freeze-thaw cycles and kept at room temperature for the same time. This finally resulted in 4 sets of joints by combining the freeze-thaw degradation or not with the low-temperature conditions or not in the slip testing. Therefore, a total of 16 different conditions were studied by also considering 4 different contact surfaces between the joined plates in each set. The results obtained show influence of environmental conditions on the slip resistant capacity of these joints.

Experimental investigation of towing- and course-stability of a FPSO towed by a tug-boat with lateral motion

  • Park, Seung Hyeon;Lee, Seung Jae;Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • In the conventional experiment to assess the towing operations, the towing stability of the towed vessel has been evaluated under the condition without lateral motion of the tug-boat. However, the tug-boats may have a lateral force to change the direction of the towed vessel. In this study, experiments have been conducted considering unsteady conditions in the towing system. First, a towing test system in a Circular Water Channel (CWC) using the conventional experimental method is built. Second, the towing characteristics of the towed vessel are investigated using the conventional method, and they are compared with other research results and stability discriminant criteria. Third, the lateral motion of the tug-boat was modeled as a sinusoidal motion using a forced oscillation device changing frequency and amplitude. Finally, the discussion is given in terms of both towing- and course-stability of the towed vessel according to the lateral motion of the tug-boat.

Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition (수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달)

  • 정인기;김점수;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Proper Orthogonal Decomposition of Pressure Fluctuations in Moonpool (문풀 내 압력 변동에 대한 POD 분석)

  • Lee, Sang Bong;Woo, Bum;Park, Dong Woo;Ahn, You Won;Go, Seok Cheon;Seo, Heung Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.484-490
    • /
    • 2012
  • Experiments of circulating water channel and two dimensional numerical simulations were performed to investigate the fluctuating characteristics of pressure in moonpool. Based on the quasi-two dimensional characteristics of pressure fluctuations disclosed by the spatial cross-correlations, the numerical results showed qualitatively good agreement with experimental data. Proper orthogonal decomposition was employed to the spatial distributions of pressure fluctuations in order to find the first and second modes of fluctuations. The first mode of pressure fluctuations showed that the fluctuating characteristics of pressure were related to the behaviors of vortical structures. The velocity fluctuations were conditionally averaged to make clear that the coherent structures were responsible for the pressure fluctuations in moonpool.