• Title/Summary/Keyword: oscillation control

Search Result 498, Processing Time 0.025 seconds

An experimental study on instability and control of co-flow diffusion flames (동축류 확산화염의 불안정성과 제어에 관한 실험적 연구)

  • Lee, Hyeon-Ho;Hwang, Jun-Yeong;Jeong, Seok-Ho;Lee, Won-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.153-164
    • /
    • 1997
  • Flame oscillation phenomena in a co-flow diffusion flame was experimentally studied with periodic fuel supply using a solenoid valve. The degree of excitation was controlled by changing the volume flux of fuel passing through the valve. Flame oscillation frequencies were measured utilizing a photodiode, a spectrum analyzer, video and high speed movies. Laser planar visualization was employed to study the correlation between the flame oscillation and the toroidal vortices. Observed are three regimes of flame oscillation, where the oscillation frequencies are for the multiples of excitation, the excitation itself and the flame natural oscillation. Both periods of natural oscillation and of excitation induced oscillation exist over one cycle of the excitation in the frequency multiplied regime. It is considered as an effect of balancing the influence of buoyancy driven vortex with that of excitation induced vortex near the excitation rate of 0.2. Flame shapes are become monotonous as increasing the excitation frequency to the range of over two fold of the natural oscillation. The flame oscillation can be modulated to the frequency of either multiples of excitation or excitation itself under certain conditions. This implies that the flame oscillation could be modulated to avoid the resonance frequency of the combustor, and shows the possibility of active control of the flame oscillation.

Combustion Control and Symptom Detection on Self-excited Combustion Oscillation (자려 연소진동에 관한 연소제어와 징후의 검출)

  • Yang Young-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1111-1122
    • /
    • 2004
  • An idea to suppress the self-excited combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined and the unsteady combustion was driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by this method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillation. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure For the purpose, the unique measures to observe the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals, have been proposed.

Modulated Fuel Feedback Control of a Fuel Injection SI Engine (연료량 변조법에 의한 연료분사식 가솔린엔진의 공연비 제어)

  • 박경석;박진일;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.102-111
    • /
    • 1996
  • For the air-fuel ratio control in a fuel injection SI engine, the Jump-Ramp control algorithm has been widely adopted by using the on/off type oxygen sensor. But the Jump-Ramp control method has limitation on treating the frequency and amplitude of the air-fuel ratio oscillation. This study suggests another feedback control logic named modulated fuel feedback control, which has a concept of pre-tuned air-fuel ratio oscillation. In the modulation method, the oxygen sensor output is not treated as on/off signal but as analog signal for feedback. By using the modulation method, the frequency and the amplitude of air-fuel ratio oscillation can be adjustable to some extent for improving the conversion efficiency of the Three-Way Catalyst. The result shows that the performance of the modulation method is better than that Jump-Ramp control method in reducing the amplitude of the air-fuel ratio oscillation as well as in increasing the frequency of the air-fuel ratio oscillation.

  • PDF

Experimental/Computational Study on the Supersonic Cavity Flow with a Sub-Cavity to Reduce the Pressure Oscillation (압력진동을 저감하기 위한 sub-cavity를 가진 초음속 공동유동에 대한 실험 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3009-3014
    • /
    • 2007
  • The effectiveness of passive control techniques for alleviating the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed near the leading edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF

A Study on Weld Pool Oscillation for Pool Geometry Measurement (완전용입 풀의 진동을 이용한 형상측정에 관한 연구)

  • 유중돈
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.62-73
    • /
    • 1993
  • Weld pool oscillation for the full-penetration GTA welding process was investigated for its possible application to weld penetration control through theoretical modeling and experiment. Energy method was used to estimate the natural frequency of the molten pool having the physically-acceptable weld geometry and oscillation modes. An unique experimental system was built which had the data acquisiton and video capabilities so that the pool oscillation signals and molten pool surfaces could be monitored continuously. Pool oscillation was detected through arc voltage and arc light emission simultaneously. The signal from arc light emission showed good coherence with that from arc voltage, and arc light generated the higher quality signal. The molten pool was found to oscillate in different oscillation modes based on the travel speed and weld geometry. The natural frequency estimated from the theoretical model agreed reasonably well with the experimental results.

  • PDF

Oscillation Amplitude-controlled Resonant Accelerometer Design using Aautomatic Gain Control Loop (자동이득 제어루프를 이용한 진폭제어방식의 공진형 가속도계 설계)

  • Yun, Suk-Chang;Sung, Sang-Kyung;Lee, Young-Jae;Kang, Tae-Sam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.674-679
    • /
    • 2008
  • In this paper, we introduce a new design approach for self-sustained resonant accelerometer, that takes advantage of the automatic gain control (AGC) loop to achieve a stabilized oscillation dynamics. Fundamental idea of this accelerometer is to maintain uniform amplitude of oscillation under input accelerations. Through system modeling and loop transformation considering the envelope of oscillation, the controller is designed to maintain uniform amplitude in oscillation under dynamic input acceleration. The simulation results demonstrate the feasibility of the proposed accelerometer design, which is applicable to control grade inertial measurement system in industrial and civil application fields.

A New DPWM Method to Suppress the Low Frequency Oscillation of the Neutral-Point Voltage for NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1207-1216
    • /
    • 2015
  • In order to suppress the low frequency oscillation of the neutral-point voltage for three-level inverters, this paper proposes a new discontinuous pulse width modulation (DPWM) control method. The conventional sinusoidal pulse width modulation (SPWM) control has no effect on balancing the neutral-point voltage. Based on the basic control principle of DPWM, the relationship between the reference space voltage vector and the neutral-point current is analyzed. The proposed method suppresses the low frequency oscillation of the neutral-point voltage by keeping the switches of a certain phase no switching in one carrier cycle. So the operating time of the positive and negative small vectors is equal. Comparing with the conventional SPWM control method, the proposed DPWM control method suppresses the low frequency oscillation of the neutral-point voltage, decreases the output waveform harmonics, and increases both the output waveform quality and the system efficiency. An experiment has been realized by a neutral-point clamped (NPC) three-level inverter prototype based on STM32F407-CPLD. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed DPWM method.

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs (연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.