• Title/Summary/Keyword: oscillating water column

Search Result 78, Processing Time 0.028 seconds

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Conveter (진동수주형 파력발전장치 공기챔버의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.621-625
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted owe chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. In numerical scheme, the potential problem inside the chamber is solved by use of the Green integral equation associated with the Rankine Green function, while outer problem with the Kelvin Green function taking account of fluctuating air pressure in the chamber. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

Preliminary Investigation for Feasibility of Wave Energy Converters and the Surrounding Sea as Test-site for Marine Equipment

  • Park, Jin-Yeong;Baek, Hyuk;Shim, Hyungwon;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.351-360
    • /
    • 2020
  • Of late, demand for test sites for marine equipment such as ASV, AUV, ROV, and various underwater sensors is increasing. The authors have focused on an oscillating water column (OWC), which is being constructed near Chagwido Island Jeju, as one of the test-sites. The main objective of the OWC is to produce wave energy and develop technologies. It has been built in the sea approximately 1 km off the coast. It has berth accommodation and some rooms that can be used as laboratories. To investigate the feasibility of its usage as a test site for marine equipment, we acquired bathymetric data around the OWC by using a multi-beam echo sounder and a single-beam scanning sonar. The accessibility of the OWC from nearby ports and the use of support vessels or ships were also investigated. 3D point cloud data from the multi-beam echo sounder and 2D acoustic images from the scanning sonar are expected to be used as references for identifying changes over time. In addition, through these experiments, we derived a procedure to use this facility as a test site by using the IDEF0 functional modelling method. Based on this preliminary investigation and previously reported examples, we determined the general conditions and preferences for evaluating the performance of various marine equipment heuristically. Finally, we developed five applications that were derived from this investigation.

Research and Anaysis of Wave Energy Characteristic for Wave Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.520-526
    • /
    • 2006
  • Wave Energy is a derivative of the solar energy input to the earth, which is accumulated on open water surfaces by the action of the winds Waves are disturbances in the water surface. This paper is interested primarily in progressive waves, which carry energy from one place to another Waves are irregular in size and frequency. Moreover the surface of the sea is one of the most hostile environments for engineering structures and materials. The idea of harnessing the tremendous power of the ocean's waves is not new. Hundreds of wave energy conversion techniques have been suggested over the last two centuries. Although many WECS (Wave Energy Conversion Systems) have been invented, only a few systems have been tested and evaluated. This paper describes the characteristic of WES (Wave Energy System) in terms of, devices, resource and potential, etc.. Finally, this paper provides a summary of general and specific conclusions and recommendations concerning WECS potential in Korea.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

A Study on Experimental Method of Impulse turbine for OWC-type Wave Energy Conversion (파력발전용 임펄스터빈의 모형시험 기법연구)

  • LEE YOUNG-YEON;HONG SEOK-WON;HYUN BEOM-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.268-273
    • /
    • 2004
  • A study on experimental method of the model test for the impulse turbine is carried out. the wave simulator is used to reproduce the real wave condition. It controls two parameter correspond to wave height and wave frequency. The optimum design which is reported by T. Setoguchi is manufactured and tested for the validation of our test facilities. The comparison of model test show that our facilities produce little bit higher efficiency at maximum efficiency point. To increase the efficiency of turbine, the new rotor with negative tip clearance is designed and being tested.

  • PDF

A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments (강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • Hong, Seok-Won;Choi, Hark-Sun;Lew, Jae-Moon;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

A Study of Pneumatic Reaction Force of Air Chamber for an OWC type Wave Energy Device by Forced Heave Experiments (강제동용시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • CHOI Hark-Sun;LEW Jae-Moon;HONG Seok-Won;KIM Jin-Ha
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.212-219
    • /
    • 2004
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct arc studied experimentally. Experimental OWC model is idealized as a simple circular cylinder with an orifice type air duct located at the middle of the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

  • PDF

A Study of Self Starting Characteristics of Impulse Turbine of Wave Energy Conversion (파력발전용 임펄스 터어빈의 자기 기동 특성 해석)

  • MOON JAE-SEUNG;HYUN BEOM-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.220-224
    • /
    • 2004
  • The present paper deals with the numerical study to analyze the self-starting performance of impulse turbine in a reciprocating air flow generated by sinusoidal motion of wave inside oscillating water column. Result was compared to that of Wells turbine, well-known wave energy conversion device, and showed that the impulse turbine has a superior self-starting ability. More detailed parametric study was performed to demonstrate the effects of moment of inertia of rotor, loading torque, tip clearance and angle of guide vane.

  • PDF

Hydrodynamic analysis of a floating body with an open chamber using a 2D fully nonlinear numerical wave tank

  • Uzair, Ahmed Syed;Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.281-290
    • /
    • 2012
  • Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.