• Title/Summary/Keyword: orthotropic steel deck plate

Search Result 34, Processing Time 0.026 seconds

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

The Analytical Study on the Cause of Fatigue Damage and the Improvement of Fatigue Performance for Orthotropic Steel Deck (강바닥판 피로손상 원인규명 및 피로성능 개선에 관한 해석적 연구)

  • Kyung Kab-Soo;Shin Dong-Ho;Kim Kyo-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.647-654
    • /
    • 2006
  • In orthotropic steel decks, it is likely to have defects due to fatigue damages because most of structural joints(the connection of longitudinal rib and transverse rib, the connection of deck plate and longitudinal rib) are connected by welds. However. orthotropic steel decks have many advantages. such as light weight and reduction of construction time. in comparison with concrete decks. Therefore. they are mostly used in long-span bridges and urban highway bridges. This study consists of the cause identication of fatigue damage and the suggestion of rational thickness on deck plate about the connection of deck plate and longitudinal rib. The results are as follows: fatigue damage cause at the connection of deck plate and longitudinal rib is local deformation in deck plate. And, rational thickness of deck plate is 16mm thickness.

  • PDF

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

A Study on Improvement of fatigue Details in Orthotropic Steel Deck Bridge with Bulkhead Plate (벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구)

  • 공병승
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • An orthotropic steel deck system is widely adapted form for a long-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connection. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional hit size test, and the finite element method, which can minimize local stress through parametric study.

A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced. (벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구)

  • 공병승;윤성운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

A Parametric Study on Bulkhead Plate of Orthotropic Steel Deck Bridge (강바닥판교의 벌크헤드 플레이트에 관한 매개변수 연구)

  • 공병승;김진만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.333-339
    • /
    • 2003
  • Recently, the bridges become greater according to development of a construction technology. This phenomenon requires long span bridge, so that increases the dead weight. The orthotropic steel deck bridges have much advantages such as the light dead weight and the reduction of construction period. And almost whole process of carried out is manufactured at factory, so it can cause the increase of quality authoritativeness. But orthotropic steel deck bridge is consist of structure by welding, it can not avoid a lot of welding jobs, defects and transformation by welding are becoming problem accordingly. Specially, topical stress concentration phenomenon in cross connection area of longitudinal and transverse rib causes fatigue failure. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This treatise with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and tile cross-connection area of longitudinal and transverse rib.

  • PDF

EN 1991-2 traffic loads design charts for closed rib orthotropic deck plate based on Pelikan-Esslinger method

  • Vlasic, Andjelko;Radic, Jure;Savor, Zlatko
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.303-323
    • /
    • 2009
  • Charts for the bending moments in the closed rib orthotropic deck plate are derived, based on the method originally introduced by Pelikan and Esslinger. New charts are done for EN 1991-2 traffic load distribution schemes. The governing Huber plate equation is solved utilizing Fourier series for various bridge deck plate boundary conditions. Bending moments are given as a function of deck plate rigidities and span length between cross beams. Old diagrams according to DIN 1072, the new ones according to EN 1991-2 and FE analyses results are compared. For typical bridge orthotropic deck plates, it can be concluded that the new EN 1991-2 traffic loads produce larger mid-span bending moments when two lane schemes are used, then those of DIN 1072. For support moments, DIN 1072 gives larger values for any number of lanes, especially under span lengths of 5m. The relevant differences are up to 25%.

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Study for the Improvement of Fatigue Crack on Intersection of Longitudinal- Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결부의 피로균열 개선방안 연구)

  • Kong, Byung-Seung;Yun, Seong-Wun
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1084-1089
    • /
    • 2004
  • Recently, Orthotropic steel deck bridges, which have long span decks, have been regarded as one of economical as well as durable bridge types. However, Orthotropic steel deck bridge is used by a lot of welding, which may cause welding defect and deformation of connections. This kind of system happens some damages by the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest point because of the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that a study for the installing of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical system of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

Analytical Study on the Development of High-Performance Orthotropic Steel Deck considered the Fatigue Behaviors of Structural Details (구조 상세부의 피로거동을 고려한 고성능 강바닥판 개발에 관한 해석적 연구)

  • Kyung, Kab Soo;Shin, Dong Ho;Kim, Kyo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Various fatigue damages have been reported in orthotropic steel deck structures put upon girders. These damages are caused by complex behaviors of the deck, which is directly subjected to vehicle loads. To estimate the causes of fatigue cracks at the welded connected parts of the trough rib and the flor beam, and the trough rib and the deck plate, in orthotropic steel deck structures, FE analyses were first, performed in this study. Parameter studies were carried out to suggest effective structural details that consider fatigue, in which the main parameters are the thickness of the deck plate, the shape of the connection of the trough rib and the flor beam such as the slit form, and the welding length. This study suggests that the effective structural details improved the fatigue strength and discusses.