• Title/Summary/Keyword: orthotropic shell

Search Result 77, Processing Time 0.022 seconds

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

Non-local orthotropic elastic shell model for vibration analysis of protein microtubules

  • Taj, Muhammad;Majeed, Afnan;Hussain, Muzamal;Naeem, Muhammad N.;Safeer, Muhammad;Ahmad, Manzoor;Khan, Hidayat Ullah;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • Vibrational analysis in microtubules is examined based on the nonlocal theory of elasticity. The complete analytical formulas for wave velocity are obtained and the results reveal that the small scale effects can reduce the frequency, especially for large longitudinal wave-vector and large circumferential wave number. It is seen that the small scale effects are more significant for smaller wave length. The methods and results may also support the design and application of nano devices such as micro sound generator etc. The effects of small scale parameters can increase vibrational frequencies of the protein microtubules and cannot be overlooked in the analysis of vibrating phenomena. The results for different modes with nonlocal effect are checked.

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Nonlinear Analysis of Reinforced and Prestressed Concrete Shells Using Layered Elements with Drilling DOF

  • Kim Tae-Hoon;Choi Jung-Ho;Kim Woon-Hak;Shin Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.645-654
    • /
    • 2005
  • This paper presents a nonlinear finite element procedure for the analysis of reinforced and prestressed concrete shells using the four-node quadrilateral flat shell element with drilling rotational stiffness. A layered approach is used to discretize, through the thickness, the behavior of concrete, reinforcing bars and tendons. Using the smeared-crack method, cracked concrete is treated as an orthotropic nonlinear material. The steel reinforcement and tendon are assumed to be in a uni-axial stress state and to be smeared in a layer. The constitutive models, which cover the loading, unloading, and reloading paths, and the developed finite element procedure predicts with reasonable accuracy the behavior of reinforced and prestressed concrete shells subjected to different types of loading. The proposed numerical method fur nonlinear analysis of reinforced and prestressed concrete shells is verified by comparison with reliable experimental results.

A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS)

  • Liu, Rong;Kwok, Yi-Lin;Li, Yi;Lao, Terence-T;Zhang, Xin;Dai, Xiao-Qun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.389-397
    • /
    • 2006
  • The beneficial effects of graduated compression stockings (GCS) in prophylaxis and treatment of venous disorders of human lower extremity have been recognized. However, their pressure functional performances are variable and unstable in practical applications, and the exact mechanisms of action remain controversial. Direct surface pressure measurements and indirect material properties testing are not enough for fully understanding the interaction between stocking and leg. A three dimensional (3D) biomechanical mathematical model for numerically simulating the interaction between leg and GCS in dynamic wear was developed based on the actual geometry of the female leg obtained from 3D reconstruction of MR images and the real size and mechanical properties of the compression stocking prototype. The biomechanical solid leg model consists of bones and soft tissues, and an orthotropic shell model is built for the stocking hose. The dynamic putting-on process is simulated by defining the contact of finite relative sliding between the two objects. The surface pressure magnitude and distribution along the different height levels of the leg and stress profiles of stockings were simulated. As well, their dynamic alterations with time processing were quantitatively analyzed. Through validation, the simulated results showed a reasonable agreement with the experimental measurements, and the simulated pressure gradient distribution from the ankle to the thigh (100:67:30) accorded with the advised criterion by the European committee for standardization. The developed model can be used to predict and visualize the dynamic pressure and stress performances exerted by compression stocking in wear, and to optimize the material mechanical properties in stocking design, thus, helping us understand mechanisms of compression action and improving medical functions of GCS.

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates (적층 복합재료 사다리꼴 주름판의 좌굴해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • This work investigates the elastic buckling characteristics of laminated composite trapezoidal corrugated plates with simply supported edges using the analytical method. In the analysis, three types of in-plane loading conditions: uniaxial, biaxial and shear loads are considered. Because it is very difficult to determine the mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated plates. The corrugated element is homogenized as an orthotropic material. The previous formulae for bending rigidities of corrugated plate are adapted in this paper. The comparisons of the proposed analytical results with those of FEA based on the shell element are made to verify the proposed analytical method. In the comparison study both the critical buckling loads and the buckling mode shapes are presented. Some numerical results are presented to check the effect of the geometric properties.