• Title/Summary/Keyword: orthotropic bridge deck

Search Result 48, Processing Time 0.021 seconds

An Experimental Study on the Static Behavior in Weak Axis of FRP Bridge Deck Filled with a Foam (폼 충전 FRP 바닥판의 약축방향 정적거동 특성에 관한 실험적 연구)

  • Kim, Byeong Min;Zi, Goang Seup;Hwang, Yoon Koog;Lee, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.943-953
    • /
    • 2006
  • We investigated experimentally the static behavior of an orthotropic bridge deck which is made from glass fiber reinforced polymer (GFRP) and polyurethane foam. The bridge deck consists of many unit cells with rectangular holes which are filled with the foam to improve its structural behavior in its weak axis. It is found that although the elastic modulus of the foam compared to that of the GFRP is about the order of, the structural behaviors in the weak axis such as nominal strength, stiffness, etc. are greatly improved. Owing to the low mass density of the foam used in this study, the bridge deck is still light enough with the improved structural properties. Webs of the cells filled with the foam did not significantly contribute to the strength development of the deck. However, the propagation of a crack initiated in a cell is caught by the webs and limited to the inside of that cell only, which makes the load-displacement behavior of the foam-filled GFRP deck less brittle.

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.

Local Behavior of Structural Details for Orthotropic Steel Deck Bridge with Longitudinal Rib of Open Section and Retrofitting Method of Fatigue Cracks (개단면리브를 갖는 강바닥판 교량의 국부거동 분석 및 피로균열 보강방안)

  • Lee, Sung Jin;Kyung, Kab Soo;Lee, Hee Hyun;Jeon, Jun Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.33-44
    • /
    • 2013
  • Although many studies have been performed for the structural details of orthotropic steel deck, most of them were focused on the trough rib of standard type, but not for orthotropic steel deck with longitudinal rib of open section used at beginning of the deck. In order to investigate the cause of fatigue crack for orthotropic steel deck bridge serviced 31 years with longitudinal rib of open section, in this study, the behavior characteristics of target structural details were analyzed based on measurement data under real traffic condition. Also the typical loading truck passing the target bridges was estimated with the structural analysis detailed, and the stresses and deformation patterns of target structural details were analyzed by performing the detailed structural analysis. Based upon the analysis, retrofitting methods of the fatigue crack were suggested and its validation was examined. From this study, it was clarified that fatigue crack of longitudinal rib with open section were affected with the stress increment by shear deformation in the rib and the occurrence of alternative stress due to moving vehicle. In addition, it was known that it is important to perform fatigue design reflected the local behavior of the structural details.

Analysis Study on Fatigue Stress on the Orthotropic Steel Deck Applied Polymer Concrete Pavement (폴리머 콘크리트 포장을 적용한 강바닥판의 피로응력에 관한 해석적 연구)

  • Han, Bum-Jin;Yoon, Sang-Il;Choi, Byung-Jin;Choi, Jin-Woong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 2014
  • In this study, polysulfide epoxy polymer concrete was chosen as an ultra thin bridge deck overlay, and the effect of polymer concrete pavement on the fatigue stress range of the orthotropic steel deck was analyzed through the comparative analysis with epoxy asphalt pavement and SFRC pavement. Abaqus was used to estimate the fatigue stress range, and signed von-mises stress was used to estimate fatigue stress range according to pavement materials and thickness, considering there were multi axis stresses which have longitudinal and lateral direction on the welded parts of the steel deck.

Analytical Study on the Development of High-Performance Orthotropic Steel Deck considered the Fatigue Behaviors of Structural Details (구조 상세부의 피로거동을 고려한 고성능 강바닥판 개발에 관한 해석적 연구)

  • Kyung, Kab Soo;Shin, Dong Ho;Kim, Kyo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Various fatigue damages have been reported in orthotropic steel deck structures put upon girders. These damages are caused by complex behaviors of the deck, which is directly subjected to vehicle loads. To estimate the causes of fatigue cracks at the welded connected parts of the trough rib and the flor beam, and the trough rib and the deck plate, in orthotropic steel deck structures, FE analyses were first, performed in this study. Parameter studies were carried out to suggest effective structural details that consider fatigue, in which the main parameters are the thickness of the deck plate, the shape of the connection of the trough rib and the flor beam such as the slit form, and the welding length. This study suggests that the effective structural details improved the fatigue strength and discusses.

Reliability-based assessment of steel bridge deck using a mesh-insensitive structural stress method

  • Ye, X.W.;Yi, Ting-Hua;Wen, C.;Su, Y.H.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.367-382
    • /
    • 2015
  • This paper aims to conduct the reliability-based assessment of the welded joint in the orthotropic steel bridge deck by use of a mesh-insensitive structural stress (MISS) method, which is an effective numerical procedure to determine the reliable stress distribution adjacent to the weld toe. Both the solid element model and the shell element model are first established to investigate the sensitivity of the element size and the element type in calculating the structural stress under different loading scenarios. In order to achieve realistic condition assessment of the welded joint, the probabilistic approach based on the structural reliability theory is adopted to derive the reliability index and the failure probability by taking into account the uncertainties inherent in the material properties and load conditions. The limit state function is formulated in terms of the structural resistance of the material and the load effect which is described by the structural stress obtained by the MISS method. The reliability index is computed by use of the first-order reliability method (FORM), and compared with a target reliability index to facilitate the safety assessment. The results achieved from this study reveal that the calculation of the structural stress using the MISS method is insensitive to the element size and the element type, and the obtained structural stress results serve as a reliable basis for structural reliability analysis.

The Influence of the Aspect Ratio on the Composite Material Bridge Deck Structures

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Theories for composite material structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms $M_x$ on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

Analytical Study on the Reinforced Details of Orthotropic Steel Deck Bridge (강바닥판 교량의 보강상세에 관한 해석적 연구)

  • Kyung, Kab-Soo;Shin, Dong-Ho;Kim, Kyo-Hoon;Park, Kyung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.443-451
    • /
    • 2007
  • The improvement of stiffness by the increase of thickness of deck plate or the reinforcement of longitudinal rib is one method among the effective methods to control fatigue damages occurring in orthotropic steel deck. It is likely that the increase of stiffness is effective to restrain local deformation caused by axial load in the steel deck. Therefore, in this study, the parameter studies for the reinforced structural details such as the bulk-head plate and vertical rib which is established to reduce the resultant stresses in the connection parts of the longitudinal rib and floor beam were performed with FE analysis. From the results, it was known that the reinforced structural detail with the bulk-head plate in the longitudinal ribs reduced overall the principal stresses at the connection parts, but the stress concentration increased in the weld toe parts which are occurring fatigue cracks. Also, it was estimated that the reinforced structural detail with the vortical rib in the longitudinal ribs because of the reduction of stress concentration in the weld toe parts is more effective details than the bulk-head plate.

Effective Notch Stress Method for Fatigue Evaluation of Welded Joints in a Steel Bridge Deck

  • Sim, Hyoung-Bo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.89-92
    • /
    • 2012
  • Effective notch stress, as an approach to evaluate the local stress at a notch (weld toe or root), is defined as the total stress assuming linear-elastic material behavior. This method can be effectively used to evaluate the fatigue performance of welded joints. In this study, finite element analysis results using the effective notch stress method were correlated with fatigue test results of rib-to-deck welded joints in a steel orthotropic bridge deck. Effective notch stress approach provided a good correlation with the crack pattern observed in the full-scale fatigue test. A higher effective notch stress at the critical weld toe than at the weld root was consistent with the dominant crack pattern observed at the weld toe during testing. The effective notch stress at the toe on the deck plate was about 80% higher than that on the rib; no cracks at the weld toe on the rib in the testing were observed. Maximum effective notch stress at the weld root occurred on the upper side of the root notch, which indicates that cracks are more likely to propagate into the deck plate, not into the weld metal. This is also consistent with the observed crack pattern in which the crack from the root propagated upward into the deck plate. No such crack pattern, propagating into the weld metal, was observed in the testing.