• Title/Summary/Keyword: orthorhombic structure

Search Result 240, Processing Time 0.028 seconds

Double magnetic entropy change peaks and high refrigerant capacity in Gd1-xHoxNi compounds in the melt-spun form

  • Jiang, Jun-fan;Ying, Hao;Feng, Tang-fu;Sun, Ren-bing;Li, Xie;Wang, Fang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1605-1608
    • /
    • 2018
  • $Gd_{1-x}Ho_xNi$ melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature ($T_C$) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from $T_C$, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (${\Delta}S_M$) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ${\Delta}S_M$ around $T_C$ is almost same. The other maximum of ${\Delta}S_M$ around SRO transition, however, had significantly positive relationship with x. It reached a maximum about $8.2J\;kg^{-1}\;K^{-1}$ for x = 0.8. Thus double large ${\Delta}S_M$ peaks were obtained in $Gd_{1-x}Ho_xNi$ melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of $622J\;kg^{-1}$ for x = 0.6. $Gd_{1-x}Ho_xNi$ ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.

Structural and Electrical Properties of (La,Nd,Sr)MnO3 Ceramics for NTC Thermistor Devices

  • Shin, Kyeong-Ha;Park, Byeong-Jun;Lim, Jeong-Eun;Lee, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.292-296
    • /
    • 2022
  • (La0.5Nd0.2Sr0.3)MnO3 specimens were prepared by a solid-state reaction. In all specimens, X-ray diffraction patterns of an orthorhombic structure were shown. The fracture surfaces of (La0.5Nd0.2Sr0.3)MnO3 specimens showed a transgranular fracture pattern be possibly due to La ions (0.122 nm) as a perovskite A-site dopant substituting for Nd ions (0.115 nm) having a small ionic radius. The full-width at half maximum (FWHM) of the Mn 2p XPS spectra showed a value greater than that [8] of the single valence state, which is believed to be due to the overlapping of Mn2+, Mn3+, and Mn4+ ions. The dependence of Mn 2p spectra on the Mn3+/Mn4+ ratio according to sintering time was not observed. Electrical resistivity resulted in the minimum value of 100.7 Ω-cm for the specimen sintered for 9 hours. All specimens show a typical negative temperature coefficient of resistance (NTCR) characteristics. In the 9-hour sintered specimen, TCR, activation energy, and B25/65-value were -1.24%/℃, 0.19 eV, and 2,445 K, respectively.

Growth and Optical Properties of SnSe/BaF2 Single-Crystal Epilayers (SnSe/BaF2 단결정 박막의 성장과 광학적 특성)

  • Lee, II Hoon;Doo, Ha Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 2002
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $SnSe/BaF_2$ epilayers. The SnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy(HWE) technique. It was found from the analysis of X-ray diffraction patterns that $SnSe/BaF_2$ epilayer was growing to single crystal with orthorhombic structure oriented [111] along the growth direction. Using Rutherford back scattering(RBS), the atomic ratios of the SnSe was found to be stoichiometric, almost 50 : 50. The best values for the full width at half maximum (FWHM) of the DCXRD was 163 arcsec for SnSe epilarer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $SnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}$(E) of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points in the optical spectra. The real and imaginary parts(${\varepsilon}_1$ and ${\varepsilon}_2$) of the dielectric function ${\varepsilon}$ of SnSe were measured. These data are analyzed using a theoretical model known as the model dielectric function(MDF). The optical constants related to dielectric function such as the complex refractive index(n*-n+ik), absorption coefficient (${\alpha}$) and normal- incidence reflectivity (R) are also presented for $SnSe/BaF_2$.

  • PDF

A Study on the Characteristics of Martensitic Transformation Behaviors in In-X(X=Pb,Sn) Alloys (In-X(X=Pb,Sn) 합금의 마르텐사이트변태거동 특성에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.233-238
    • /
    • 2010
  • The phase transformations and the shape memory effect in In-rich Pb alloys and In rich-Sn alloys have been studied by means of X-ray diffractometry supplemented by metallographic observations. The alloys containing 12~15 at.%Pb transform from the ${\alpha}_2$ (fct) phase to the ${\alpha}_1$ (fct) phase by way of an intermediate phase (m phase) on cooling. The results of X-ray diffraction show that the metastable intermediate phase is observed both on cooling and heating, and has a face-centered orthorhombic (fco) structure. It is concluded that the ${\alpha}_1{\rightleftarrows}{\alpha}_2$ transformation is expressed by the ${\alpha}_1{\rightleftarrows}m{\rightleftarrows}{\alpha}_2$ transformation both on usual cooling and heating with the rate more than $8{\times}10^{-3}$ K/s. The $m{\rightleftarrows}{\alpha}_2$ transformation takes place with a mechanism involving macroscopic shear and are of diffusionless (martensitic) type. The temperature hysteresis in the two transformations is 10~13 K between the heating and cooling transformations. The alloys containing 0~11 at.%Sn are -phase solid solutions with a face centered tetragonal structure (c/a > 1) at room temperature, the axial ratio increasing continuously with tin content. The In-(11~15) at.%Sn alloys are mixtures of ${\alpha}$ and ${\beta}$ phases, the ${\beta}$ phase having a f. c. tetragonal structure (c/a < 1). The alloys containing more than 15 at.%Sn are ${\beta}$-phase solid solutions. The In-(12.9~15.0) at.%Sn alloys show a shape memory effect only when quenched to the temperature of liquid nitrogen, although their effect becomes weak and finally disappears after keeping at room temperature for a long time. The ${\beta}{\rightarrow}{\alpha}^{\prime}$ phase transformation is of the diffusionless (martensitic) type, and takes place between 330 K at 12.9 at.%Sn and 150 K at 14.5 at.%Sn. The hysteresis of transformation temperatures on heating and cooling is considerably large (29~40 K), depending on the composition. Both In-Pb and In-Sn alloys showed distinct the shape memory effects.

Nonstoichiometry and Physical Properties of the Perovskite $CaGa_{1-x}Fe_xO_{3-y}$ System (페롭스카이트 $CaGa_{1-x}Fe_xO_{3-y}$계의 비화학량론과 물리적 성질)

  • Rho, Kwon Sun;Ryu, Kwang Hyun;Chang, Soon Ho;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.295-301
    • /
    • 1996
  • A series of solid solutions of the $CaGa_1-xFexO_3-y$ system with the compositions of x=0.25, 0.50, 0.75, and 1.00 has been prepared at $1150^{\circ}C$ under an atmospheric air pressure. The structure, nonstoichiometric chemical formula, and the distribution of cations for the solid solutions are determined by X-ray diffraction analysis, Mohr salt titration, Mossbauer spectroscopic analysis. Their physical properties are discussed with electrical conductivity and magnetic measurements. The crystal system of all the compositions is a brownmillerite orthorhombic system from the X-ray diffraction analysis and the reduced lattice volume increases linearly with x value except that of the composition of x=0.25. All the solid solutions do not contain $Fe^{4+}$ ion and the mole number of oxygen vacancies or y value is 0.50 from Mohr salt analysis. The oxidation state of Fe ion, the coordination state, the structure change in the Brownmillerite-type structure, and the distribution of $Ga^{3+}$ and $Fe^{3+}$ ions are discussed with Mossbauer spectroscopic analysis. The electrical conductivity increases and activation energy decreases, as x value increases. The traditional semiconducting property of this system is described in terms of band theory. The compositions of x=0.50∼1.00 show a thermal magnetic hysteresis in the magnetic measurement with the cooling conditions, which is discussed in terms of the space group and Dzyaloshinsky-Moriya interaction.

  • PDF

X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi;Murakami Rumi;Zhang Jianming;Ozaki Yukihiro;Mori Katsuhito;Takahashi Isao;Terauchi Hikaru;Noda Isao
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

Synthesis of CaZrO3 : Eu3+ phosphor by skull melting method (스컬용융법에 의한 CaZrO3 : Eu3+ 형광체 합성)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.131-135
    • /
    • 2020
  • Single crystal phased CaZrO3 : Eu3+ phosphor have been synthesized by skull melting method. The crystal structure, morphology and optical properties of synthesized phosphor were investigated XRD (X-ray diffraction), SEM (scanning electron microscopy), UV (ultraviolet) fluorescence reaction and PL (photo luminescence). The starting materials having chemical composition of CaO: ZrO2 : Eu2O3= 0.962 : 1.013 : 0.025 mol% were charged into a cold crucible. The cold crucible was 120 mm in inner diameter and 150 mm in inner height, and 3 kg of mixed powder (CaO, ZrO2 and Eu2O3) was completely melted within 1 hour at an oscillation frequency of 3.4 MHz, maintained in the molten state for 2 hours, and finally air-cooled. The XRD results show that synthesized phosphor is stabilized in orthorhombic perovskite structure without any impurity phases. The synthesized phosphor could be excited by UV light (254 or 365 nm) and the emission spectra results indicated that bright red luminescence of CaZrO3 : Eu3+ due to magnetic dipole transition 5D07F2 at 615 nm was dominant.

Phase Formation and Electrical Conductivity of Ba-Doped LaBaGaO4 Layered Perovskite (Ba 첨가 LaBaGaO4 층상 Perovskite의 생성상과 전기전도도)

  • Lee, Kyu-Hyoung;Kim, Jong-Hwa;Kim, Hye-Lim;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.623-627
    • /
    • 2004
  • Phase formation and electrical conduction behavior of Ba-doped LaBaGa $O_4$ layered perovskite were studied. Orthorhombic single phase of $K_2$Ni $F_4$-type structure was observed for the composition range of 0$\leq$x$\leq$0.2 in the La$\_$1+x/Ba$\_$1+x/Ga $O_4$$\_$4-$\delta$/ system by X-ray analysis. In the dry atmosphere, La$\_$0.8/Ba$\_$1.2/Ga$\_$3.9/ exhibited mixed conduction of oxygen ion and hole (p-type) at high p( $O_2$). However, in water vapor containing atmosphere, it showed proton conduction due to the incorporation of water into oxygen vacancies. As the temperature decreased, the contribution of proton conductivity to the total conduction increased and proton conduction was dominant below 350$^{\circ}C$. The activation energy for proton conduction was calculated as 0.72 eV.

A Study on Crystallographic and Mossbauer Spectroscopic Properties of Magnetic Oxide (산화물 자성체의 결정학적 및 뫼스바우어 분광학적 특성 연구)

  • Park, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.701-706
    • /
    • 1999
  • The crystal structure and magnetic properties of magnetic oxide system (F $e_2$ $O_3$)$_{5}$(A $l_2$ $O_3$)$_{4-x}$(G $a_2$ $O_3$)$_{x}$)SiO has been studied using X-ray diffraction and Mossbauer spectroscopy The changes of magnetic structure by the Ga ion substitution and the temperature variation have been investigated using Mossbauer spectroscopy, and the results are compared with those of the SQUIB measurements. Results of X-ray diffraction indicated that the crystal structures of the system change from a cubic spinel type to an orthorhombic via the intermediate region. This magnetic oxide system seems to be new kind of spinel type ferrites containing high concentration of cation vacancies. Various and complicated Mossbauer spectra were observed in the samples (x>0.2) at temperatures lower than room temperature. This result could be explained by freezing of the superparamagnetic dusters. On cooling and substitution, magnetic states of the system show various and multicritical properties. Unexpected dip in magnetization curves below 50K was observed in SQUID measurements. It was interpreted as an effect of spin canting including spin freezing or collective spin behavior.ior.r.

  • PDF

The Crystal Structure of Nicotine Dihydroiodide (Nicotine Dihydroiodide의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1965
  • Crystals of nicotine dihydroiodide, are orthorhombic with space group $p2_12_12_1$.The unit cell of dimensions a=7.61, b=11.01, e=17.27${\AA}$, contains four formula units. The structure has been determined by X-ray diffraction method and has been refined to give the R-index, ${\sum}{\mid}{\mid}F_{\circ}{\mid}-{\mid}F_c{\mid}{\mid}{\div}{\sum}{\mid}F_{\circ}{\mid}$, of 0.16 and 0.14 for $F_{okl}\;and\;F_{hol}$ respectively.The mean lengths of C-C and C-N bonds in pyridine ring are 1.40 and $1.35{\AA}$ and those in pyrolidine ring 1.56 and $1.48{\AA}$ respectively, though accurate measurement of bond length has not been attempted. The six atoms in the pyridine ring are coplanar and on the other hand $C_6,\;C_7,\;C_8$ and $N_2$ atoms in pyrrolidine ring form a plane within accuracy of the analysis, and $C_9$ atom is distant $0.22{\AA}$ out of the plane consist of $C_6,\;C_7,\;C_8$ and $N_2$ aoms. The normals to the two planes form an angle of $94^{\circ}$ with each other. Iodine atom is distant $3.55{\AA}$ from nitrogen atom in pyridine ring and the other iodine atom $3.58{\AA}$ from nitrogen atom in pyrrolidine ring, so that the nitrogen and iodine atoms are firmly linked.It seems that the only forces binding nicotine dihydroiodide molecules together in the crystal are Van der Waals forces.

  • PDF