• Title/Summary/Keyword: orthogonality equation

Search Result 36, Processing Time 0.024 seconds

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

Orthogonal Grid Generation Using Linear Grid Generating Equations (선형 격자 형성 방정식을 이용한 직교 격자 형성에 관한 연구)

  • Lee S. W.;Kwon J. H.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.99-106
    • /
    • 2000
  • A method of two and three dimensional orthogonal grid generation with control of spacing by using the covariant Laplace equation is Presented. An important feature of the methodology is its ability to control effectively the grid spacing especially near the boundaries still maintaining good orthogonality in whole field. The method is based on the concept of decomposition of the global transformation into consecutive transformation of an approximate conformal mapping and au auxiliary orthogonal mapping to have linear and uncoupled equations. Control of cell spacing is based on the concept of reference arc length, and orthogonal correction is performed in the auxiliary domain. It is concluded that the methodology can successfully generate well controlled orthogonal grids around bodies of 2 and 3 dimensional configurations.

  • PDF

Stress intensity factors for 3-D axisymmetric bodies containing cracks by p-version of F.E.M.

  • Woo, Kwang S.;Jung, Woo S.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.245-256
    • /
    • 1994
  • A new axisymmetric crack model is proposed on the basis of p-version of the finite element method limited to theory of small scale yielding. To this end, axisymmetric stress element is formulated by integrals of Legendre polynomial which has hierarchical nature and orthogonality relationship. The virtual crack extension method has been adopted to calculate the stress intensity factors for 3-D axisymmetric cracked bodies where the potential energy change as a function of position along the crack front is calculated. The sensitivity with respect to the aspect ratio and Poisson locking has been tested to ascertain the robustness of p-version axisymmetric element. Also, the limit value that is an exact solution obtained by FEM when degree of freedom is infinite can be estimated using the extrapolation equation based on error prediction in energy norm. Numerical examples of thick-walled cylinder, axisymmetric crack in a round bar and internal part-thorough cracked pipes are tested with high precision.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

Orthogonal Grid Generation Using Linear Grid Generating Equations (선형 격자 형성 방정식을 이용한 직교 격자 형성에 관한 연구)

  • Lee S. W.;Kwon J. H.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • A method of two and three dimensional orthogonal grid generation with control of spacing by using the covariant Laplace equation is presented. An important feature of the methodology is its ability to control effectively the grid spacing especially near the boundaries still maintaining good orthogonality in whole field. The method is based on the concept of decomposition of the global transformation into consecutive transformation of an approximate conformal mapping and an auxiliary orthogonal mapping to have linear and uncoupled equations. Control of cell spacing is based on the concept of reference arc length, and orthogonal correction is peformed in the auxiliary domain. It is concluded that the methodology can successfully generate well controlled orthogonal grids around bodies of 2 and 3 dimensional configurations.

  • PDF

Construction of the shape functions of beam vibrations for analysis of the rectangular plates by Kantorovich-Vlasov's method

  • Olodo, Emmanuel E.T.;Degan, Gerard
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.595-601
    • /
    • 2014
  • For analysis of the plates and membranes by numerical or analytical methods, the question of choice of the system of functions satisfying the different boundary conditions remains a major challenge to address. It is to this issue that is dedicated this work based on an approach of choice of combinations of trigonometric functions, which are shape functions of a bended beam with the boundary conditions corresponding to the plate support mode. To do this, the shape functions of beam vibrations for strength analysis of the rectangular plates by Kantorovich-Vlasov's method is considered. Using the properties of quasi-orthogonality of those functions allowed assessing to differential equation for every member of the series. Therefore it's proposed some new forms of integration of the beam functions, in order to simplify the problem.

An Investigation into the Application of the Modal Analysis to the Calculation o Transverse Vibration Responses of Ship Hulls (선체횡진동응답(船體橫振動應答)의 Model Analysis에 관한 고찰(考察))

  • S.B.,Han;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.29-34
    • /
    • 1984
  • The degree of deviation from the orthogonality relations of the actual ship's natural modes and its effects on the vibration responses are numerically investigated. The results show that, for the practical application of the modal analysis, it is not an essential requirement in utilization of the expansion theorem to assume the added mass being constant regardless of the mode shapes, or to take the dry hull's natural modes. That is, it is more reasonable to take the actual ships natural modes as the set of the normal modes and to get the solution of the normal coordinates equation by neglecting both the inertia coupling and the stiffeness coupling.

  • PDF

Optimal design of a piezoelectric smart structure for cabin noise control (실내소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.445-450
    • /
    • 1997
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectric actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction.

  • PDF

An Acoustic Analysis of Mufflers with a Concentric Extended Pipe (동심 연장관형 소음기의 음향해석)

  • Lee, Jun-Shin;Lee, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.108-114
    • /
    • 1995
  • Cylindrical chamber mufflers with an extended inlet or outlet are extensively used in many application fields to reduce the propagated noise in ducts. The basic attenuation effectivencess in the low frequency region can be explained by the reactive wave action inside the expansion chamber associated with the geometric configurations of the inlet and outlet locations, and the area expansion of the jacket. In this study, an acoustic analysis is carried out for a concentric extended pipe inserted into a simple expansion chamber. An algebraic equation is derived by using the eigenfuction expansion and orthogonality principle in which the acoustic pressures and particle velocities defined on each subdivided surface are expressed by the separable coordinates. By using the proposed analytical method, transmission losses are predicted for several configurations of the concentric extended systems and they agree very well with experimental results.

  • PDF

Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints (원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF