• 제목/요약/키워드: orogenic process

검색결과 3건 처리시간 0.018초

한반도 중서부 대청도에 발달하는 광역규모 과습곡의 구조기하학적 특징 (Structural Geometry of a Regional-scale Overturned Fold in the Daecheong Island, Central-western Korean Peninsula)

  • 박정영;조등룡;이승환;곽유정;박승익
    • 자원환경지질
    • /
    • 제57권1호
    • /
    • pp.41-50
    • /
    • 2024
  • 본 연구는 한반도 중서부 대청도에 발달하는 광역규모 습곡의 구조기하학적 특징과 형성 기작에 대하여 보고한다. 야외에서 획득한 구조 요소 자료를 기반으로 구조 영역별 등면적 하반구 스테레오 투영과 습곡된 지층 경계의 하향 투영을 수행한 결과, 연구지역에 발달하는 습곡은 북동 방향으로 완만하게 침강된 개방 과습곡으로 분류된다. 과습곡 날개부의 비대칭 기생습곡과 힌지부의 대칭 기생습곡은 지층과 평행한 압축작용을 경험한 이후 요굴흐름 기작이 발생했음을 의미한다. 한반도 중서부의 조산운동사에서 대청도 과습곡이 가지는 의미를 규명하기 위해 향후 습곡의 형성시기 규명이 반드시 필요하다.

Low-Sulfidation Epithermal Gold Deposits in East China: Characteristics, Types, and Setting

  • Mao, Jing-Wen;Li, Xiao-Feng;Zhang, Zuo-Heng
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.15-18
    • /
    • 2003
  • We preliminarily describe the basic characteristics of the low-sulfidation epithermal gold deposits in East China. It can be divided into granite- and alkaline rock-related types. These gold deposits are structurally controlled by caldera, craters, diatremes and related faults, hosted in volcanic rocks, and characterized by alterations of adularia, chalcedony, quartz, sericite and calcite assemblages. The ore-forming ages are within three pulses of 180-188 Ma, 135-141 Ma, and ca. 120 Ma, which are geodynamically corresponding the collision orogenic process between North China and Yangtze cratons, transformation of the tectonic regime, and delamination of the lithosphere, respectively.

  • PDF

옥천대 북동부에 분포하는 하부 고생대층에 대한 고지자기 연구 (Paleomagnetic Study of the Lower Ordovician Formations in the North Eastern Okcheon Zone)

  • 민경덕;이윤수;황석연
    • 자원환경지질
    • /
    • 제26권3호
    • /
    • pp.395-401
    • /
    • 1993
  • Lower Ordovician rock samples were collected from 23 sites located at the Okcheon non-metamorphic zone, near Taeback and Yeongweol areas, southern part of the Korean Peninsula. A characteristic magnetic component was obtained from four sites. This stable direction ($Dm=-19.4^{\circ}$, $Im=24.1^{\circ}$) which is carried by hematite of very high temperature $679^{\circ}C$), successfully pass both of reversal test and paleopole reliability test, and is regarded as a primary direction. The remagnetized components can be divided into three on the basis of their characteristic directions and magnetic minerals. The first which is carried by hematite, magnetite and pyrrhotite, is widely found at the whole sites. It shows syn- or post-tectonic remagnetization according to strongly negative fold test and distribution between Mesozoic and present field directions. The second, in situ, is distinguishable from the present field direction. After bedding correction, it is identical to Late Triassic to Early Jurassic direction. Its magnetic carrier is considered to be a single component hematite, which may be acquired by pre-tectonic CRM in the Okcheon orogenic zone. The third, which is carried by magnetite and hematite, is characterized by stable reversed direction. These minerals may be acquired by the thermal or chemical process in unknown period. Paleopole position is $169.2^{\circ}E$ in longitude and $59.9^{\circ}S$ in latitude, which indicates that the study area was located at $12.6^{\circ}S$ in paleo-latitude and belonged to northern end of the Gondwana in Early Ordovician.

  • PDF