• Title/Summary/Keyword: organic wastes

Search Result 532, Processing Time 0.029 seconds

A Study on Organic Resources for Pig Manure Treatment by Vermicomposting (지렁이에 의한 돈분 퇴비화용 유기성자원 연구)

  • Lee, J.S.;Choi, D.C.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.289-296
    • /
    • 2009
  • The effects of the processing mixture of pig manure and various organic wastes on the growth, cast production of earthworm, and conversion of organic matter to earthworm tissues by vermicomposting. The substances used in this experiments were sawdust, rice hull, coffee waste, brewery waste, litters, turfgrass cutting residues, rice bran, vegetable wastes and rice straw and were mixed with pig manure at a ratios of 50:50 (v/v), and pig manure 100% (control), respectively. The highest values of growth parameters, cast production and conversion efficiency of organic matter to earthworm tissues were obtained at the mixtures of pig manure with coffee waste, it may due to the favourable diet conditions to process with pig manure by vermicomposting. But, all of the earthworm died in the pig manure 100% (control) and pig manure with vegetable wastes treatments by vermicomposting was impossible in this experiment. The vermicast contained a higher values of total nitrogen, available phosphorus, exchangeable cations and cation exchange capacity than their parent materials with increased availability of nutrients and improved physicochemical properties.

  • PDF

Carboxylic Acids Produced from Hydrothermal Treatment of Organic Wastes (유기성 폐기물의 고온고압수 반응에 의한 카르복시산 생성)

  • 강길윤;오창섭;김용하
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.228-233
    • /
    • 2004
  • This paper reports production of low-molecular weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds with or without oxidant (H$_2$O$_2$). Organic acids such as acetic, formic, succinic and lactic acids were obtained. This result increased to 42mg/g dry waste fish entrails in the presence of H$_2$O$_2$. Experiments on glucose representing cellulosic wastes were also carried out, getting acetic acid of about 29mg/g glucose. Studies on temperature dependance of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general. results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product.

The Study On Lime-Stabilization of Decayed Oganic Wastes (부패성유기폐기물의 석회 안정화에 관한 연구)

  • 김홍래
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 1989
  • The aim of this study is, by the Lime-Stabilization of decayed Organic Wastes, in preventing the reclaimed Waste from being another pollution due to reclaiming those things. 1. A perfect reaction is possible by the addition of poor Stabilization-Lime of 5 percent in a short time of 5 minute. 2. PH of the Stabilization-handled Wastes rise over 12. 3. Malodorant of Stabilized Wastes is slight because malodorant Volatilize in the course of the Stabilization or is captured in the handled subetance. 4. The second pollution scarcely brings about because a rapid decomposition is impossible on account of the coating of Alkali Substance.

  • PDF

A Study on the Utilization of Industrial Solid Organic Wastes (I). The Physical and Chemical Characteristics of Industrial Solid Wastes with Regard to Fertilizer Value and Humus Sources (산업 고형유기폐물의 자원화에 관한 연구 (제1보) 산업 고형유기폐물의 비료와 Humus 원으로서의 물리적 및 화학적 특성에 관하여)

  • Park Nae Joung;Kim, Yong In
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.258-268
    • /
    • 1975
  • The physical and chemical characteristics of solid organic wastes from paper and pulp industries, tanneries, and food processing industries were studied with regard to fertilizer value as well as humus sources as a rational method of waste utilization. The pulp and paper mill wastes containing low mineral nutrients but high lignin may be utilized for soil amendments through humus preparation. Chemical treatment sludges of tannery wast water contained appreciable fertilizer nutrients andiliming materials, but utilization as fertilizers or soil amendments depends on the pollution effect of high chromium content, which has not been well understood. Food processing wastes may be utilized as organic fertilizers or micronutrient sources for plant. Some wastes containing high water-soluble sugars or lower C/N ratio than 20 may be utilized as additives for rapid humus preparation.

  • PDF

Quantitative Determination of Organic Yield by Continuous Percolation Processes of Bio-wastes at K Composting Plant

  • Seo, Jeoung-Yoon;Jager, Johannes
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Percolation is the important process of extracting the soluble constituents of a fine mesh, porous substance by passage of a liquid through it. In this study, bio-wastes were percolated under various conditions through continuous percolation processes, and the energy potential of percolate was evaluated. The representative bio-wastes from the K composting plant in Darmstadt, Germany were used as the sample for percolation. The central objective of this study was to determine the optimal amount of process water and the optimum duration of percolation through the bio-wastes. For economic reasons, the retention time of the percolation medium should be as long as necessary and as short as possible. For the percolation of the bio-wastes, the optimal percolation time was 2 hr and maximum percolation time was 4 hr. After 2 hr, more than two-thirds of the organic substances from the input material were percolated. In the first percolation process, the highest yields of organic substance were achieved. The best percolation of the bio-wastes was achieved when the process water of 2 L for the first percolation procedure and then the process water of 1.5 L for each further percolation procedure for a total 8 L for all five procedures were used on 1,000 g fresh bio-waste. The gas formation potentials of 0.83 and $0.96Nm^3/ton$ fresh matter (FM) were obtained based on the percolate from 1 hr percolation of 1,000 g bio-waste with the process water of 2 L according to the measurement of the gas formation in 21 days (GB21). This method can potentially contribute to reducing fossil fuel consumption and thus combating climate change.

Utilization of Industrial Wastes as Fertilizer (산업폐기물(産業廢棄物)의 비료화(肥料化))

  • Shin, Jae-Sung;Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.68-79
    • /
    • 1984
  • An increased population and rapidly expanding industrial development have led to enormous amounts of various domestic and industrial wastes. The proper disposal of ever-increasing wastes is a growing global problem. Land treatment is one of the rational approaches that are environmentally safe and economically practical. It has long been practised in many sites. Recycling of industrial wastes on agricultural land can provide better possible means for maintaining environmental quality and utilizing waste-resources. Even though industrial wastes are beneficial as soil amendment and fertilizer, they have some limitation on land application because of wide variability as well as physicochemical problem in their composition. A direct application of solid and liquid wastes on land is being practised in Korea and some experimental results are presented. The direct application of fermentation waste on rice resulted in a 6 percent yield increase. Another organic residue from glutamic acid fermentation is widely used not only as a direct application as a liquid fertilizer but also for a raw material of organic compound fertilizer. These wastes are much promising as sources of plant nutrients, since they have large amounts of nutrients, especially nitrogen with few toxic metals. On the other hand, fertilizers developed from inorganic industrial wastes include calcium silicate, calcium sulfate and ammonium sulfate. The calcium silicate fertilizer simply produced from slag, by-product of iron and steel manufacturing plant is one of the most successful example of the conversion of wastes to fertilizer and slag production capacity totals to over three million MT/year. About 200,000 MT of calcium silicate fertilizer is currently applied in the paddy rice every year. Calcium sulfate, a waste from the wet phosphoric acid process is to some extent used as a filler of compound fertilizers but quite large quantites are directly applied for the reclamation of tidal flat.

  • PDF

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Investigation on optimal factors in regard to matureness degree of food waste and mixing rate of the casting in vermicomposting (지렁이 사육에 있어서 음식물쓰레기의 부숙정도와 분변토 혼합비의 영향)

  • Kim, Young-Koo;Park, Sang-June;Choi, Hun-Geun;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.72-81
    • /
    • 2004
  • For disposal food wastes which is about 30% portion of tatal organic wastes, vermicomposting is more environmental-friendly treatment than lanfill, incineration, etc. Recently, the interest has been increasing but there are many problems on management of vermicopmposting in field especially. This study was conducted to investigate an optimal factors, which are limit NaCl conc., the mixing rate of food wastes and casting for growth of an earthworm related to efficient vermicomposting. The limit conc. of NaCl was 0.5% and in case of feeding food wastes to earthworms as a prey only, most earthworms were dead in a few hours due to excessive degradation of organic materials and high NaCl conc. However as feeding with the casting of proper mixing rate(3:7), most earthworms were survived until finishing composting. It was investigated the increaser degree of matureness of food wastes, the higher conc. of NaCl, therefore for efficient vermicomposting, it seemed proper mixing rate of food wastes and the casting is better than matureness of food wastes. and the most suitable mixing rate was 3:7 food wastes and the casting.

  • PDF

Uptake of Heavy Metals by Radish (Raphanus sativus cv. sodamaltari) from the Soils after Long-Term Application of Organic Wastes (유기성 폐기물 장기시용 후 토양에서 무 (Raphanus sativus cv. sodamaltari)의 중금속 흡수)

  • Kwon, Soon-Ik;Jang, Yeon-Ah;Kim, Kye-Hoon;Jung, Goo-Bok;Kim, Min-Kyeong;Hwang, Hae;Chae, Mi-Jin;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This study was carried out to understand the long-term effects of organic waste treatments on the fate of heavy metals in soils originated from the organic wastes and consequent uptake of heavy metals by plant, together with examination of changes in soil properties and plant growth performance. In this study, the soils treated with three different organic wastes (municipal sewage sludge, alcohol fermentation processing sludge, pig manure compost) at three different rates (12.5, 25.0, 50.0 ton $ha^{-1}yr^{-1}$) for 7 years (1994 - 2000) were used. To see the long-term effect, plant growth study and soil examination were conducted twice in 2000 and 2010, respectively. There was no additional treatments of organic wastes for 10 years after the organic waste treatment for 7 years. Compared to plant growth examination conducted in 2000 using radish (Raphanus sativus cv. sodamaltari), it appeared that height, root length and diameter, fresh weight of radish grown in 2010 decreased in the plots treated with municipal sewage sludge and alcohol fermentation processing sludge and that the extent of decrease was higher with increase of sludge application rates. On the other hand, pig compost treatment increased plant height, root length and diameter, fresh weight with increasing application rates. Cu and Pb concentrations in radish root and leaves increased in 2010 compared to those in 2000 while Ni concentrations in root and leaves decreased. Zn concentration was increased only in the soils treated with pig manure compost. Multiple regression analysis among heavy metal species fractions in soils, soil pH, and metal concentrations in radish root and leaves indicated that the metal uptake by radish was governed mainly by the soil pH and subsequent increase of available heavy metal fractions in soils with organic waste treatments.

Study of Chemical Parameters on Butchery wastes as a Bulking Agent in Composting of Swine Manure (돈분의 퇴비화에 있어 원보조재의 혼합비에 따른 최종산물의 화학적인 조성 연구)

  • 이상환;김인호;홍종욱;권오석;김정우
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • This study was conducted to evaluate chemical parameters on butchery wastes as a bulking agent in composting of swine manure. Treatments included T1 : Swine manure + Rice hull, T2 ; Swine manure + Rice hull + Vermiculite, T3 ; Swine manure + Rice hull + Perlite, T4, Swine manure + Vermiculite, T5 : Swine manure + Vermiculite + Perlite, T6 ; Swine manure + Perlite, T7 ; Swine manure + lice hull + Vermiculite + Perlite. During the composting period, changes of temperature and pH were showed traditionally composting trend. Moisture, organic matter, total nitrogen and C/N ratio were higher rice hull than vermiculite and perlite treatments. Ammonia-N and EC were not differences among the treatments. In heave metal, Cd and Cr were showed higher in vermiculite treatments than other treatments. Rice hull treatments were decreased volatile fatty acids compared to that of other treatments. In conclusion, rite hull containing high organic content was greater composting effects than vermiculite and perlite containing low organic content.

  • PDF