• 제목/요약/키워드: organic vapors

검색결과 53건 처리시간 0.03초

Study on the response surface optimization of online upgrading of bio-oil with MCM-41 and catalyst durability analysis

  • Liu, Sha;Cai, Yi-xi;Fan, Yong-sheng;Li, Xiao-hua;Wang, Jia-jun
    • Environmental Engineering Research
    • /
    • 제22권1호
    • /
    • pp.19-30
    • /
    • 2017
  • Direct catalysis of vapors from vacuum pyrolysis of biomass was performed on MCM-41 to investigate the effects of operating parameters including catalyzing temperature, catalyzing bed height and system pressure on the organic yields. Optimization of organic phase yield was further conducted by employing response surface methodology. The statistical analysis showed that operating parameters have significant effects on the organic phase yield. The organic phase yield first increases and then decreases as catalyzing temperature and catalyzing bed height increase, and decreases as system pressure increases. The optimal conditions for the maximum organic phase yield were obtained at catalyzing temperature of $502.7^{\circ}C$, catalyzing bed height of 2.74 cm and system pressure of 6.83 kPa, the organic phase yield amounts to 15.84% which is quite close to the predicted value 16.19%. The H/C, O/C molar ratios (dry basis), density, pH value, kinematic viscosity and high heat value of the organic phase obtained at optimal conditions were 1.287, 0.174, $0.98g/cm^3$, 5.12, $5.87mm^2/s$ and 33.08 MJ/kg, respectively. Organic product compositions were examined using gas chromatography/mass spectrometry and the analysis showed that the content of oxygenated aromatics in organic phase had decreased and hydrocarbons had increased, and the hydrocarbons in organic phase were mainly aliphatic hydrocarbons. Besides, thermo-gravimetric analysis of the MCM-41 zeolite was conducted within air atmosphere and the results showed that when the catalyst continuously works over 100 min, the index of physicochemical properties of bio-oil decreases gradually from 1.15 to 0.45, suggesting that the refined bio-oil significantly deteriorates. Meanwhile, the coke deposition of catalyst increases from 4.97% to 14.81%, which suggests that the catalytic activity significantly decreases till the catalyst completely looses its activity.

확산포집기를 이용한 공기 중 유기용제 포집에 관한 연구 (A Study on Organic Solvent Measurement Using Diffusive Sampler)

  • 박미진;윤충식;백남원
    • 한국산업보건학회지
    • /
    • 제4권2호
    • /
    • pp.208-223
    • /
    • 1994
  • The purpose of this study was to evaluate the efficiency of diffusive(or passive) sampler in measuring airbone organic solvents. Diffusive samplers are generally simple in construction and do not require power for operation. The efficiency of the diffusive samplers has not sufficiently been investigated in Korea. Three types of samplers were studied in this study. The sampling and analytical results by passive samplers were compared with results by charcoal tube method recommended by NIOSH(National Institute for Occupational Safty and Health). The following characteristics are identified and studied as critical to the performance passive monitors; recovery, reverse diffusion, storage stability, accuracy and precision, face velocity and humidity, n-Hexane, TCE(trichloroethylene) and toluene were used as test vapors. A dynamic vapor exposure system consisting of organic vapor generator and sampling chamber for evaluating diffusive samplers are made. The results of the study are summarized as follows. 1. NIOSH recommands that the overall accuracy of a sampling method in the range of 0.5 to 2.0 times the occupational health standard should be ${\pm}25$ percent for 95 percent confidence level. Among three types of diffusive samplers, sampler A has permeation membrane and samplers Band C have diffusive areas, samplers A and B met the criterion that overall accuracy for 95% confidence level of the samplers were within ${\pm}25$ percent of the reference value. Sampler C had overall accuracy ${\pm}9.6%$ and ${\pm}11.8%$ in hexane and TCE, respectively. The concentration of toluene was overestimated in sampler C with overall accuracy of ${\pm}43.9%$. 2. The desorption efficiencies of diffusive samplers were 96-107%. 3. There was no significant sampe loss during four weeks of storage both with and without refrigeration. 4. There was no significant reverse diffusion, when the samplers were exposure to clean air for 2 hours after sampling for 2 hours at the level of 2 TLY. 5. In case of 8 hours sampling, relative differences(RD) of concentrations between charcoal tube method and diffusive method were 15-39%, 13-46%, and 4-35% for sampler A, B and C, respectively. The performance was poor in 8 hours sampling for multiple substance monitors. 6. At high velocity(100 cm/sec), samplers B and C overestimated the concentrations of organic vapors, and sampler A with permeation membrance gave better results. 7. At 80% relative humidity, samplers showed no siginificant effect. Low humidity also did not affect the diffusive samplers.

  • PDF

이중의 광학적 변화를 이용한 다공성 실리콘 가스센서 제작 (Dual Photonic Transduction of Porous Silicon for Sensing Gases)

  • 고영대;김성진;장승현;박철영;손홍래
    • 한국진공학회지
    • /
    • 제16권2호
    • /
    • pp.99-104
    • /
    • 2007
  • [ $Febry-P{\acute{e}}rot$ ] 프린지 패턴 (fringe pattern)과 광발광성 (photoluminescence, PL)의 광학적 성질을 동시에 가지고 있는 다공성 실리콘을 이용하여 가스센서를 개발하였다. 다공성 실리콘 샘플은 p-type 실리콘 웨이퍼 (boron-doped, <100> orientation, resistivity $1{\sim}10{\Omega}$)를 이용하여 전기화학적 식각을 통하여 만들어 졌다. 다공성 실리콘 샘플들은 열적 산화 방법과 hydrosilylation 방법을 통하여 그 표면이 수소로 종결된 다공성 실리콘 (Si-H)과 산화된 다공성 실리콘(Si-OH), 두 가지 각각 다른 표면 성질을 갖는 다공성 실리콘을 제작 하였다. 준비된 두 가지 다른 다공성 실리콘 칩들은 메탄올, 아세톤, 헥산, 그리고 톨루엔의 증기에 노출 시켰을 때 Febry-P rot 프린지 패턴의 변화나 PL의 변화를 관측하여 다공성 실리콘을 이용한 VOCs (volatile organic compounds) 센서로서의 응용에 대하여 연구하였다. $Febry-P{\acute{e}}rot$ 프린지 패턴은 유기 물질의 증기압이 클수록 단파장으로 이동하는 폭이 컸고, 광 발광성은 극성도가 큰 물질일수록 소강현상이 크게 일어나는 것을 알 수 있었다.

Measurement and Estimation of VOC Composition from Gasoline Evaporation

  • Na, K.;Moon, K.-C.;Kim, Y.P.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E3호
    • /
    • pp.101-107
    • /
    • 2001
  • Source profiles were developed for a total of 45 volatile organic compounds (VOC) that can be emitted from gasoline evaporation. The gasoline samples of five major brands (for each season) were blended on the basis of the market share in Seoul area and analyzed by a GC-MS/FID system. In addition, we calculated gasoline evaporative compositions using the Raoult's law from the liquid gasoline compositions. The measured and estimated gasoline vapor compositions agree well each other. As a group, alkanes are the most abundant in the gasoline vapors profiles (77.4% on average), followed by alkenes (19.1%), and aromatics (1.7%). As a specie in gasoline vapor, i-pentane is the most abundant, followed by n-butane, n-pentane, i-butane, trans-and cis-2-butenes, 2-methyl-2-butene, and trans-and cis-2-pentenes . It was also seen that aromatic content was much lower in the vapor phase compositions. From the comparison between experimental and calculated compositions, we identified the fact that once the gasoline vapor composition is reliably constructed entirely from the measured gasoline composition and the Raoult's law calculations, the need for doing separate chemical analyses of the gasoline vapor can be reduced.

  • PDF

Controlling Painters' Exposure to Volatile Organic Solvents in the Automotive Sector of Southern Colombia

  • Castano, Belky P.;Ramirez, Vladimir;Cancelado, Julio A.
    • Safety and Health at Work
    • /
    • 제10권3호
    • /
    • pp.355-361
    • /
    • 2019
  • Background: Painters in the automotive sector are routinely exposed to volatile organic solvents, and the levels vary depending on the occupational health and safety controls enforced at the companies. This study investigates the levels of exposure to organic vapors and the existence of controls in the formal economy sector in southern Colombia. Methods: This is an exploratory study of an observational and descriptive character. An analysis of solvents is conducted via the personal sampling of painters and the analysis of samples using the National Institute for Occupational Safety and Health 1501 method. The amount of solvents analyzed varied according to the budget allocated by the companies. The person in charge of the occupational safety and health management system was interviewed to learn about the exposure controls implemented at the companies. Results: A medium exposure risk for toluene was found in one company. Another presented medium risk for carbon tetrachloride, xylene, ethylbenzene, and n-butanol. The others showed low risk of exposure and that the controls implemented were not sufficient or efficient. Conclusion: These results shed light on the working conditions of these tradespeople. The permissible limits established by Colombian regulations for the evaluated chemical contaminants were not exceeded. However, there were contaminants that exceeded the limits of action. The analysis of findings made it possible to propose improvements in occupational safety and health management systems to allow the optimization of working conditions for painters, prevent the occurrence of occupational diseases, and reduce costs to the country's health system.

탄소흡착제에 의한 삼성분계 휘발성 유기화합물의 흡착특성 (Adsorption Characteristics of Three-components Volatile Organic Compounds on Activated Carbonaceous Adsorbents)

  • 손미숙;김상도;우광재;박희재;서만철;이시훈;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.669-675
    • /
    • 2006
  • 본 연구에서는 휘발성 유기화합물 중 산업공정에서 사용빈도가 가장 높은 방향족류의 toluene, 케톤류의 MEK, 알코올류의 IPA에 의한 삼성분계 휘발성 유기화합물의 탄소계 흡착제에 대한 흡착특성 실험을 수행하였다. 입상 활성탄, 활성탄소섬유를 이용한 단일흡착제와 입상 활성탄과 활성탄소섬유를 동시에 적용한 조합흡착제를 사용하여 흡착성능과 흡착량을 비교 분석하였다. 실험용 흡착장치를 사용하여 단일성분 및 삼성분계 휘발성 유기화합물에 대한 흡착파과 실험을 수행하였으며, 각 경우에 대해 흡착량과 흡착성능을 비교하였다. 입상 활성탄은 toluene의 단일흡착 시 높은 흡착성능을 보였으나, IPA, MEK의 단일성분과 삼성분계 흡착실험에서는 상대적으로 낮은 성능을 보였다. 활성탄소섬유와 조합흡착제는 단일성분 흡착결과에서 모두 우수한 흡착성능을 보였으나, 삼성분계 흡착의 경우에는 흡착제의 경제성과 흡착효율을 고려하였을 때 입상 활성탄과 활성탄소섬유를 동시에 적용한 조합흡착제가 흡착제로서 가장 적합함을 확인할 수 있었다.

다양한 실내 침투 휘발물질 농도 예측 방법을 이용한 토양오염물질의 실내흡입 위해성평가 (Risk Assessment of Volatile Organic Compounds for Vapor Intrusion Pathway Using Various Estimation Methodology of Indoor Air Concentration)

  • 정재웅;남택우;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.51-65
    • /
    • 2015
  • Indoor inhalation of vapors intruded into buildings is an important exposure pathway in volatile organic compoundscontaminated sites. Site-specifically measured indoor air concentration is preferentially used for risk assessment. However, when indoor air concentration of VOC is not measured, the indoor air concentration needs to be estimated from soil concentration or measured soil gas concentration of the VOC. Some risk assessment guidance (e.g., Korea Ministry of Environment (KMOE) and American Society for Testing and Materials (ASTM) International guidance) estimate the indoor air concentration from soil concentration while other guidances (e.g., United States Environmental Protection Agency (USEPA) and Dutch National Institute for Public Health (RIVM)) estimate it from measured soil gas concentration. This study derived indoor inhalation risks of intruded benzene in two benzene-contaminated residential areas with four different risk assessment guidances (i.e., KMOE, USEPA, ASTM, and Dutch RIVM) and compared the derived risks. The risk assessment results revealed that indoor air estimation approach from soil concentration could either underestimate (when the contaminant is not detected in soil) or overestimate (when the contaminant is detected in soil even at negligible concentration) the indoor air inhalation risk. Hence, this paper recommends to estimate indoor air concentration from soil gas concentration, rather than soil concentration. Discussions about the various indoor air concentration estimation approaches are provided.

확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구 (Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length)

  • 이병규;장재길;정지연
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

유/무기 복합 박막을 이용한 유기발광 소자의 보호층에 관한 연구 (Study on the Hybrid Passivation layer of OLEDs using the Organic/Inorganic Thin Film)

  • 배성진;이주원;이영훈;강남수;김동영;황성우;김재경;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.78-80
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the Ultra Violet (UV) curable acrylate layer and MS-31 (MgO:$SiO_2$=3:1wt%) layer was adopted in organic light emitting device (OLEO) to protect organic light emitting materials from penetrations of oxygen and water vapors. The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007gm/m^{2+}day$ at $37.8^{\circ}C$ and 100% RH. This value was within the limited range of the sensitivity of WVTR measurements. And the lifetime of the HTF passivated device became almost three times longer than that of the bare device. The HTF on the OLEO was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • 제10권2호
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.