• Title/Summary/Keyword: organic solar cells

Search Result 306, Processing Time 0.034 seconds

Fabrication and Characterization of High-Performance Thin-Film Encapsulation for Organic Electronics (유기반도체용 고성능 박막 봉지재의 제조 및 평가)

  • Kim, Nam-Su;Graham, Samuel
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1049-1054
    • /
    • 2012
  • Continued advancements in organic materials have led to the development of organic devices that are thin, flexible, and lightweight and that can potentially be used as low-cost energy-conversion devices. While these devices have many advantages, the environmentally induced degradation of the active materials and the low-work-function electrodes remain a valid concern. Hence, many vacuum deposition processes have been applied to develop low-permeation barrier coatings. In this work, we present the results pertaining to the developed thin-film encapsulation. Multilayer encapsulation involves the use of $SiO_x$ or $SiN_x$ with parylene. The effective water vapor transmission rates were investigated using a Ca-corrosion test. The integration of the developed barrier layers was demonstrated by encapsulating pentacene/$C_{60}$ solar cells, and the results are presented.

Coverage-dependent adsorption behavior of monoethanolamine on TiO2 (110)

  • Sohn, So-Dam;Kim, Su-Hwan;Kwak, Sang-Kyu;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.126-126
    • /
    • 2016
  • Understanding adsorption behavior organic molecules at oxide surfaces is very important for the application of organic-inorganic hybrid materials. Recently, monoethanolamine (MEA) adsorbed on $TiO_2$ surface has received great interests because it can lower the work function of $TiO_2$ in photo-electronic devices such as OLED and solar cells. In this study, we investigated the role of surface defects in adsorption behaviors of MEA at the rutile $TiO_2$ (110) surface by combined study of scanning tunneling microscopy and density functional theory calculations. Our results revealed that oxygen vacancy is the most stable adsorption site for MEA on $TiO_2$ (110) surface at low coverage. As coverage increases, the oxygen vacancies are occupied with the molecules and MEA molecules start to adsorb at Ti rows at higher coverages. Our results show that the defects at oxide surfaces and the intermolecular interactions are important factors for determining stable adsorption structure of MEA at $TiO_2$ (110) surfaces.

  • PDF

Infrared Spectroscopic Study of α-Cyano-4-hydroxycinnamic Acid on Nanocrystalline TiO2 Surfaces: Anchoring of Metal-Free Organic Dyes at Photoanodes in Dye-Sensitized Solar Cells

  • Dembereldorj, Uuriintuya;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.116-119
    • /
    • 2010
  • Adsorption structures of the self-assembled thin films of $\alpha$-cyano-4-hydroxycinnamic acid (CHCA) anchoring on $TiO_2$ surfaces have been studied by using temperature-dependent diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy. From the presence of the strong $\nu(COO^-)$ band at ~1390 $cm^{-1}$ along with the disappearance of the OH bands in the carboxylic acid group in the DRIFT spectra at room temperature, CHCA appeared to adsorb onto $TiO_2$ surfaces as a carboxylate form. The absence of the out-of-plane benzene ring modes of CHCA in the DRIFT spectra suggests a rather vertical orientation of CHCA on $TiO_2$. Above ~220$ ^{\circ}C$, CHCA seemed to start to thermally degrade on $TiO_2$ surfaces referring from the disappearance of most vibrational modes in the DRIFT spectra, whereas the $\nu$(C ≡ N) bands were found to remain relatively conspicuous as the temperature increased even up to ~460$^{\circ}C$.

Broadband Finite-Difference Time-Domain Modeling of Plasmonic Organic Photovoltaics

  • Jung, Kyung-Young;Yoon, Woo-Jun;Park, Yong Bae;Berger, Paul R.;Teixeira, Fernando L.
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.654-661
    • /
    • 2014
  • We develop accurate finite-difference time-domain (FDTD) modeling of polymer bulk heterojunction solar cells containing Ag nanoparticles between the hole-transporting layer and the transparent conducting oxide-coated glass substrate in the wavelength range of 300 nm to 800 nm. The Drude dispersion modeling technique is used to model the frequency dispersion behavior of Ag nanoparticles, the hole-transporting layer, and indium tin oxide. The perfectly matched layer boundary condition is used for the top and bottom regions of the computational domain, and the periodic boundary condition is used for the lateral regions of the same domain. The developed FDTD modeling is employed to investigate the effect of geometrical parameters of Ag nanospheres on electromagnetic fields in devices. Although negative plasmonic effects are observed in the considered device, absorption enhancement can be achieved when favorable geometrical parameters are obtained.

Development of Spray Coating Methods for Large Area Sol-Gel ZnO/Ag Nanowire Composite Transparent Conducting Substrates (대면적 졸-겔 산화아연/은 나노선 복합 투명 전도 기판 제조를 위한 스프레이 코팅법 개발)

  • Cho, Wonki;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • Transparent conductive thin films (TCFs) are essential materials for solar cells, organic light-emitting diodes, and display panels. Indium tin oxide (ITO) is one of the most widely used commercial materials to create TCFs'; however, new materials that can possibly replace ITO at a lower cost and/or those possessing mechanical flexibility are urgently needed. Silver nanowire (AgNW) is one of those promising materials, as it is less expensive and possesses superior mechanical flexibility as compared to ITO. We used AgNW and sol-gel ZnO to fabricate composite thin films by spray coating. We propose two spray-coating methods: the 'metal-organic chemical vapor deposition (MOCVD)/AgNW' method and the Mixture method. These two methods are expected to be commercialized for high-quality and low-cost products, respectively.

Influence of para-orientating Methoxyl Units on the Electronic Structures and Light Absorption Properties of the Triphenylamine-based dyes by DFT Study

  • Liang, Guijie;Xu, Jie;Xu, Weilin;Wang, Luoxin;Shen, Xiaolin;Yao, Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2279-2285
    • /
    • 2011
  • The geometries, electronic structures and absorption spectra of the two organic triphenylamine-based dyes TA-St-CA and TA-DM-CA, containing identical electron donors and acceptors but the different conjugated bridges, were studied by density functional theory (DFT) at the B3LYP and PBE1PBE levels, respectively. The influence of para-orientating methoxyl units on the electronic structures and light absorption properties of the dyes and the consequent photovoltaic performance of the dye-sensitized solar cells (DSSCs) were investigated in detail. The results indicate that the introduction of the para-orientating methoxyl units into the conjugated bridge induces the increased absorption wavelength as well as the more negative EHOMO corresponding to the bigger driving force $(E_{I^-/I^-_3}-E_{HOMO})$ for dye reduction, which together improve the photovoltaic performance of TA-DM-CA, although there is a decline of the open circuit voltage caused by the more negative $E_{LUMO}$.

Real-Time Observation of Temperature-Dependen Strain in Poly (3-hexylthiophene) Crystals in a Mixed Donor and Acceptor Thin Film

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.163-163
    • /
    • 2012
  • We observed strain evolution of P3HT crystals in P3HT:PCBM films and the effect of Al electrode on the evolution during real time annealing process. Based on simple assumptions, both relaxed lattice parameters and thermal expansion coefficient could be quantitatively determined. P3HT:PCBM films displayed tensile strain in as-prepared samples regardless of the presence of an Al layer. In the absence of Al layer, P3HT crystals showed only strain relaxation at an annealing temperature of $180^{\circ}C$. Meanwhile In the presence of an Al layer, the strain was relaxed and changed to compressive strain at around 120C annealing temperature, which indicated a tightening of the thiophene ring packing. These behaviors support the improved performance of devices fabricated by post annealing process.

  • PDF

New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices

  • Ro, Tak-Kyun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2897-2902
    • /
    • 2012
  • New photovoltaic donor materials, 4,4'-(2,2'-bithiazole-5,5'-diyl)bis(N,N-diphenylbenzenamine) (BDT) and 4-(2,2'-bithiazol-5-yl)-N,N-diphenylbenzenamine (BT), were synthesized. A solution processable triphenylamine-containing bithiazole (BDT and BT) was blended with a [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) acceptor to study the performance of small-molecule-based bulk heterojunction (BHJ) photovoltaic devices. Optimum device performance was achieved after annealing, for device with a BDT/PCBM ratio of 1:4. The open-circuit voltage, short-circuit current, and power conversion efficiency of the device with the aforementioned BDT/PCBM ratio were 0.51 V, 4.10 $mA\;cm^{-2}$, and 0.68%, respectively, under simulated AM 1.5 solar irradiation (100 $mW\;cm^{-2}$).

Hybrid Inverted Organic Solar Cells Using Nanoimprinted $TiO_2$ (Nanoimprinting 방법으로 제작된 나노 기공 $TiO_2$를 이용한 복합 유기 태양전지의 특성 분석)

  • Baek, Woon-Hyuk;Yoon, Tae-Sik;Lee, Hyun-Ho;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1068_1069
    • /
    • 2009
  • $TiO_2$의 계면적을 넓힘으로써 태양전지의 특성을 향상시키기 위해 정렬도가 높은 나노 기공 (nanopore, NP) 이산화티타늄 ($TiO_2$)을 이용하여 복합 태양전지를 제작하였다. Polymethyl methacrylate (PMMA)를 사용한 nanoimprinting lithography (NIL) 기술을 이용하여 NP $TiO_2$를 제작하였으며. 광활성층으로는 poly(3-hexylthiophene) (P3HT)와 [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM)을 사용하였다. NP $TiO_2$를 이용한 태양전지의 전력변환효율이 1.49%로 표면이 고른 소자의 효율인 1.18%에 비해 26% 가량 증가하였다. 이와 같은 효율 향상의 원인은 $TiO_2$와 광활성층의 계면이 증가되어 전하의 생성과 분리가 용이해졌기 때문인 것으로 사료된다.

  • PDF

Fullerene derivatives for Polymer Bulk-heterojunction Solar Cells (고분자 태양전지용 플러렌 유도체)

  • Shin, Won-Suk;Hwang, Yong-Mook;Yoon, Sung-Cheol;Lee, Chang-Jin;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-249
    • /
    • 2007
  • 현재까지 $P3HT:C_{60}-PCBM$계는 고분자 유기 태양전지에서 가장 좋은 효율을 보여주고 있다. 그러나 보다 고효율의 소자 제작을 위해 신재료에 대한 연구들이 활발히 진행되고 있으며, 본 연구에서는 $C_{60}-PCBM$ 대신 $C_{70}-PCBM$을 합성하여 소자를 제작하였다. $C_{70}-PCBM$$C_{60}-PCBM$에 비하여 가시광선 영역에서 상대적으로 높은 광흡수율을 보여 주었으며, 이것은 광전류의 향상을 가져왔다. 소자제작의 주요 변수로 $P3HT:C_{70}-PCBM$ 광활성층의 처리 조건, 즉, 용매, 조성비, 열처리 조건, 광활성층의 두께 등을 조절하였는데, buffer층(LiF 층) 등이 도입되지 않은 간단한 제작조건 하에서도 본 $C_{70}-PCBM$$C_{60}-PCBM$계에 버금가는 3.5% (AM 1.5G, 100 $mW/cm^{2}$ 조건) 이상의 효율을 나타내었다.

  • PDF