• 제목/요약/키워드: organic molecules

검색결과 529건 처리시간 0.035초

Current- voltage (I-V) Characteristics of the Molecular Electronic Devices using Various Organic Molecules

  • Koo, Ja-Ryong;Pyo, Sang-Woo;Kim, Jun-Ho;Kim, Jung-Soo;Gong, Doo-Won;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.154-158
    • /
    • 2005
  • Organic molecules have many properties that make them attractive for electronic applications. We have been examining the progress of memory cell by using molecular-scale switch to give an example of the application using both nano scale components and Si-technology. In this study, molecular electronic devices were fabricated with amino style derivatives as redox-active component. This molecule is amphiphilic to allow monolayer formation by the Langmuir-Blodgett (LB) method and then this LB monolayer is inserted between two metal electrodes. According to the current-voltage (I-V) characteristics, it was found that the devices show remarkable hysteresis behavior and can be used as memory devices at ambient conditions, when aluminum oxide layer was existed on bottom electrode. The diode-like characteristics were measured only, when Pt layer was existed as bottom electrode. It was also found that this metal layer interacts with organic molecules and acts as a protecting layer, when thin Ti layer was inserted between the organic molecular layer and Al top electrode. These electrical properties of the devices may be applicable to active components for the memory and/or logic gates in the future.

Weak Interactions Between Organic Molecules and Alkali Metal Ions Present in Zeolites Help Manipulate the Excited State Behavior of Organic Molecules

  • Ramamurthy, V.
    • Journal of Photoscience
    • /
    • 제10권1호
    • /
    • pp.127-148
    • /
    • 2003
  • Zeolite is a porous highly interactive matrix. Zeolitic cations help to generate triplets from molecules that possess poor intersystem crossing efficiency. Certain zeolites act as electron acceptors and thus can spontaneously generate radical cations. Zeolites also act as proton donors and thus yield carbocations without any additional reagents. These reactive species, radical cations and carbocations, have long lifetime within a zeolite and thus lend themselves to be handled as ‘regular’ chemicals. Internal structure of zeolites is studded with cations, the counter-ions of the anionic framework. The internal constrained structure and the cations serve as handles for chemists to control the behavior of guest molecules included within zeolites.

  • PDF

Inter-Chain Interactions in Arrays of Metal-Organic Hybrid Chains on Ag(111)

  • 박지훈;정경훈;윤종건;김호원;강세종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.302-302
    • /
    • 2011
  • Fabrications of metal-organic hybrid networks attracted much attention due to possible applications in gas storages, heterogeneous catalyses, information storages, and opto-electronic devices. One way to construct three-dimensional hybrid structures is to make the arrays of planar or linear metal-organic hybrid structures which are linked through electrostatic interactions. As a model study, we fabricated the arrays of one-dimensional hybrid chains and investigated inter-chain interactions between adjacent hybrid chains using scanning tunneling microscopy (STM) and spectroscopy (STS) on Ag(111). Brominated anthracene molecules were used to grow the arrays of hybrid chains on Ag(111). We proposed atomic models for the observed structures. Linear chains are made of repetition of Ag-anthracene units. Br atoms are attached to anthracene molecules through Br-H structures which mediate inter-chain interactions. Two different apparent heights were observed in anthracene molecules. Molecules having a Br-H connection look brighter than those with two connections due to electronic effect. When a chain is laterally manipulated with STM tip, Br atoms move together with the chain implying that Br-H inter-chain interactions are quite strong.

  • PDF

Studies of the Organic Molecules Dissociative Surface Ionization in the Mass-Spectrometric Surface Ionization Method

  • Ilkhomjan Saydumarov;Dilshadbek Usmanov
    • Mass Spectrometry Letters
    • /
    • 제15권1호
    • /
    • pp.54-61
    • /
    • 2024
  • An improved voltage modulation method (VMM) was used to control the heat release and adsorption properties of the adsorbent. In this work, the voltage and flux modulation methods were considered under unified experimental conditions of dissociative surface ionization (SI) of polyatomic organic molecules, the criteria were found when under VMM conditions the current relaxation of SI carries information about the kinetic properties of thermal desorption of ionizable dissociation particles arriving on the surface of polyatomic molecules. Conditions were found under which the relaxation of the ionic current in the flux modulation method is determined by the kinetics of the heterogeneous dissociation reaction of the original polyatomic molecules. The values of the thermal desorption rate constant K+ and the activation energy E+ obtained with VMM for desorption of (CH3)2NCH+2 ions with m/z 58 by adsorption of imipramine and amitriptyline molecules agree well with each other and with the results for the desorption of the same ions by adsorption of other molecules. This confirms one of the basic conditions for the equilibrium process SI - the a degree (β coefficient) of the same particles SI on the same emitter surface is the same and does not depend on the way these particles are formed on the emitter surface.

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

The Interfacial Electronic Structure of Organic-organic Heterojunction: Effect of Molecular Orientation

  • 조상완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.114.2-114.2
    • /
    • 2014
  • The orientation of the constituent molecules in organic thin film devices can affect significantly their performance due to the highly anisotropic nature of ${\pi}$-conjugated molecules. We report here an angle dependent x-ray absorption study of the control of such molecular orientation using well-ordered interlayers for the case of a bilayer heterojunction of chloroaluminum phthalocyanine (ClAlPc) and C60. Furthermore, the orientation-dependent energy level alignment of the same bilayer heterojunction has been measured in detail using synchrotron radiation-excited photoelectron spectroscopy. Regardless of the orientation of the organic interlayer, we find that the subsequent ClAlPc tilt angle improves the ${\pi}-{\pi}$ interaction at the interface, thus leading to an improved short-circuit current in photovoltaic devices based on ClAlPc/C60. The use of the interlayers does not change the effective band gap at the ClAlPc/C60 heterointerface, resulting in no change in open-circuit voltage.

  • PDF

Structural Control and Two-Dimensional Order of Organic Thiol Self-Assembled Monolayers on Au(111)

  • 노재근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.26-26
    • /
    • 2011
  • Self-assembled monolayers (SAMs) prepared by sulfur-containing organic molecules on metal surfaces have drawn much attention for more than two decades because of their technological applications in wetting, chemical and biosensors, molecular recognition, nanolithography, and molecular electronics. In this talk, we will present self-assembly mechanism and two-dimensional (2D) structures of various organic thiol SAMs on Au(111), which are mainly demonstrated by molecular-scale scanning tunneling microscopy (STM) observation. In addition, we will provide some idea how to control 2D molecular arrangements of organic SAMs. For instance, the formation and surface structure of pentafluorobenzenethiols (PFBT) self-assembled monolayers (SAMs) on Au(111) formed from various experimental conditions were examined by means of STM. Although it is well known that PFBT molecules on metal surfaces do not form ordered SAMs, we clearly revealed for the first time that adsorption of PFBT on Au(111) at $75^{\circ}C$ for 2 h yields long-range, well-ordered self-assembled monolayers having a $(2{\times}5\sqrt{13})R30^{\circ}$ superlattice. Benzenethiols (BT) SAMs on gold usually have disordered phases, however, we have clearly demonstrated that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain BT SAMs with long-range ordered domains. Our results will provide new insight into controlling the structural order of BT or PFBT SAMs, which will be very useful in precisely tailoring the interface properties of metal surfaces in electronic devices.

  • PDF

분자영상 방사성추적자의 생산에 사용되는 방사성동위 원소 표지방법 (Radiolabeling Methods Used for Preparation of Molecular Probes)

  • 최연성
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.121-130
    • /
    • 2004
  • Molecular imaging visualizes cellular processes at a molecular or genetic level in living subjects, and diverse molecular probes are used for this purpose. Radiolabeling methods as well as radioisotopes are very important in preparation of molecular probes, because they can affect the biodistribution in tissues and the excretion route. In this review, the molecular probes are divided into small organic molecules and macromolecules such as peptides and proteins, and their commonly used radiolabeling methods are described.

Synthesis and Characterization of New Push-Pull Chromophores Containing BF2-Azopyrrole Derivatives

  • Ko, HayeMin
    • 대한화학회지
    • /
    • 제60권1호
    • /
    • pp.21-27
    • /
    • 2016
  • Novel push-pull chromophores containing 5’-(4-(bis(9,9-dimethyl-9H-fluoren-2-yl)aniline (bisDMFA) as a donor and phenylazo-methylpyrrolyl-boron difluoride (PhAPy-BF2) as an acceptor were designed and synthesized by the Knoevenagel condensation reaction for organic solar cells. Various electron withdrawing moieties were effectively introduced using 2,4-dimethyl-1H-pyrrole to afford new asymmetric BF2-azopyrrole molecules that were characterized by UV-vis spectroscopy and cyclic voltammetry measurements.

Two-dimensional Surface Structures of Arenthiols Studied by STM

  • 권기영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.89-89
    • /
    • 2012
  • Arrangement of individual atoms and molecules with atomic precision and understanding the resulting properties at the molecular level are ultimate goals of chemistry, biology, and materials science. For the past three decades, scanning probe microscopy has made strides towards these goals through the direct observation of individual atoms and molecules, enabling the discovery of new and unexpected phenomena. This talk will discuss the origin of forces governing motion of small organic molecules and their extended self-assembly into two-dimensional surface structures by direct observation of individual molecules using scanning tunneling microscopy (STM).

  • PDF