• Title/Summary/Keyword: organic modifier

Search Result 53, Processing Time 0.017 seconds

Extraction Efficiencies of Organophosphorus Pesticides Spiked in Fish Tissues by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 어류조직 중 유기인계 농약의 첨가회수율)

  • Lim, Sang-Bin;Jwa, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1163-1168
    • /
    • 1998
  • Fish tissues were spiked with organophosphorus pesticides (OPPs), mixed with a celite as a drying agent, and dynamically extracted with pure $CO_2$ or modified $CO_2$ for 10 min at different extraction temperatures, pressures and $CO_2$ flow rates. Recoveries of OPPs spiked in jacopever increased with the decrease of extraction temperature and pressure, and decreased with the increase of $CO_2$ flow rates. Modified $CO_2$ extractions with 10% methylene chloride showed a slight increase in the recoveries over pure $CO_2$ extraction. Quantity of fish tissues had great effect on their extraction efficiencies. Recoveries of OPPs were $66.7{\sim}86.3%$ for jacopever, $56.2{\sim}79.2%$ for yellow tail, $57.6{\sim}77.8%$ for blanquillo, $84.2{\sim}96.3%$ for sardine, $74.6{\sim}83.6%$ for mackerel. Application of supercritical carbon dioxide extraction offers an attractive alternative to the use of organic solvents for extraction of pesticide residues from fish tissues.

  • PDF

Optical Resolution of Free Amino Acids with Addition of Copper(II) Chelates in a Reversed-Phase Liquid Chromatography (구리(II) 킬레이트의 첨가에 의한 자유아미노산 광학이성질체의 역상 액체크로마토그래피적 분리)

  • Sun Haing Lee;Tae Sub Oh;Hong Yeup An;Kyung Sug Park;Sang Oh OH
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.879-888
    • /
    • 1992
  • Separation of the optical isomers of free amino acids by a reversed phase high performance liquid chromatography has been studied by adding a copper(II) complex of L-proline or L-proline derivatives (hydroxy-L-proline, N-benzyl-L-proline, p-xylenyl-L-proline, p-xylenyl-hydroxy-L-proline) in the mobile phase. An OPA postcolumn detection system was used for the detection of amino acids. The chromatographic properties for the free amino acids were discussed in terms of the pH, the kinds and concentration of chelate or organic modifier. The retention behaviors of the free amino acids were considerably different from, those of DNS-amino acids or DABS-amino acids. The enantioselectivity of the free amino acids was better than that of derivatized amino acids. The enantioselectivity between the optical isomers observed by use of the Cu(II)-p-xylenyl-L-proline chiral cheleate was the best among the several copper(II) chelate. A separation mechanism could be illustrated not only by the hydrophobic interaction of the diastereomer with stationary phase but also by the steric effect of the ligand exchange reaction between the free-amino acids and copper chelate.

  • PDF

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).