• 제목/요약/키워드: organic matter decomposition

검색결과 193건 처리시간 0.029초

Infection Mechanism of Pathogenic Exduate by Soil-Borne Fungal Pathogens : A Review

  • Lim, You-Jin;Kim, Hye-Jin;Song, Jin-A;Chung, Doug-Young
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.622-627
    • /
    • 2012
  • The processes to determine the composition, dynamics, and activity of infection mechanisms by the rhizosphere microflora have attracted the interest of scientists from multiple disciplines although considerable progress of the infection pathways and plant-pathogen interactions by soil borne fungal pathogens have been made. Soilborne pathogens are confined within a three-dimensional matrix of mineral soil particles, pores, organic matter in various stages of decomposition and a biological component. Among the physical and chemical properties of soils soil texture and matric water potential may be the two most important factors that determine spread exudates by soil borne fungal pathogens, based on the size of the soil pores. Pathogenic invasion of plant roots involves complex molecular mechanisms which occur in the diffuse interface between the root and the soil created by root exudates. The initial infection by soilborne pathogens can be caused by enzymes which breakdown cell wall layers to penetrate the plant cell wall for the fungus. However, the fate and mobility of the exudates are less well understood. Therefore, it needs to develop methods to control disease caused by enzymes produced by the soilborne pathogens by verifying many other possible pathways and mechanisms of infection processes occurring in soils.

새로운 인공오염포의 제작과 그 세척성에 관한 연구 (A Study on the Development of Improved Artificially Soiled Cloth and its Detergency)

  • 정두진;김미형
    • 한국의류학회지
    • /
    • 제13권3호
    • /
    • pp.207-222
    • /
    • 1989
  • New process for the preparation of the artificially soild cloth (ASC) used for detergency evaluation was developed and its detergency was also studied. ASC was prepared by the dipping of cotton cloth in the water in which oily soil, protein (gelatine), carbon black and clay had been dispersed. The clay used for this ASC was red yellowish soil around Mt. Kumjung and was a typical soil in Pusan area. Adhesive status of soil at prepared ASc was examined by an electron microscope, and crystallyzation and color change of used clay were evaluated with the determination of X-ray diffraction and surface reflectance. For the evaluation of detergency by the washing with commercial and model detergents, the behavior of soil removal from this ASC comparing with naturally soiled collar cloth was examined. Those results are summerized as followings; 1) Adhesive ststus of soil at prepared ASc was very similar to that of naturally soiled collar cloth. 2) A crystalline of clay calcined at $800^{\circ}C$ was disappeared in part and color of calcined clay changed into reddish yellow by the decomposition of organic matters. 3) More uniform ASc was prepared with clay calcined at $800^{\circ}C\;that\;200^{\circ}C$ however its detergency prepared from clay calcined at $800^{\circ}C$ was poor 4) A significant relationship between the content of inorganic matter in ASc and K/S value was found, however no significant result between the content of protein contaminated and K/S value was observed. 5) Detergency of prepared ASc had a very similar to that of naturally soiled collar cloh.

  • PDF

악취 발산감소를 위한 필터의 이용 효과 (Effect of Biofilter on Reducing Malodor Emission)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • 한국축산시설환경학회지
    • /
    • 제4권2호
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF

유용미생물처리 음식물쓰레기와 계분 혼합물 퇴비화 특성 (Composting Characteristics of Food Waste - Poultry Manure Mixture Inoculated with Effective Microorganisms)

  • 홍지형;박금주
    • 한국축산시설환경학회지
    • /
    • 제15권1호
    • /
    • pp.59-68
    • /
    • 2009
  • 농업은 작물잔사, 가축분뇨, 음식쓰레기 등의 지역자원을 퇴비화하여 이용하는 순환산업이며, 작물 생육은 빛, 물, 공기, 온도 및 양분 등이 필요하며 유해물질이 없어야한다. 유용미생물처리 음식쓰레기와 계분혼합물 횡형 밀폐원통형 교반방식 퇴비화처리시설에서 얻어진 최종퇴비는 발아율, 산소호흡지수 및 염분농도 등의 수치가 작물 생육에 유해하므로 부적합하였다. 생산된 유용미생물처리 음식쓰레기와 계분혼합물 퇴비를 분석한 결과, 퇴비공정규격, 건물기준 유기물 함량 60% 이상, 유기물대 질소비 50 이하, 탄질비 20 이하를 충족하고, 중금속함량이 미량 함유된 것으로 나타났으나, 발아율이 60% 이하, 칼리 성분이 1.2%,dm 이상 및 염분농도가 1.4%, dm 이상 등으로서 부적합한 것으로 판정되었다. 생물계폐기물 자원순환을 위한 유용미생물처리 고속퇴비화시설의 건설은 환경 친화적인 양질퇴비생산으로서 지역자원을 순환 이용하는 사회 구축이 목표이므로, 인근주민과 주변 환경에 악영향을 차단하기 위하여 양질퇴비 생산과 함께, 오폐수, 분진, 소음, 진동, 악취 및 이물질을 분리 배출하는 고효율설비가 부수적으로 반드시 필요하였다.

  • PDF

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

볏짚 사료가치 증진을 위한 알카리성 과산화수소의 적정 처리수준 (The Optimum Levels of Alkaline Hydrogen Peroxide Treatment of Rice Straw for Feed)

  • 최윤희;김명숙;홍재식
    • Applied Biological Chemistry
    • /
    • 제37권5호
    • /
    • pp.320-325
    • /
    • 1994
  • 볏짚의 사료가치를 증진시키기 위하여 알카리성 과산화수소를 이용하여 볏짚에 대한 처리수준별 화학성분의 변화와 in vitro 소화율을 조사 검토하였다. $H_2O_2(pH 11.5)$의 처리농도를 증가시킬수록 neutral detergent fiber(NDF), acid detergent fiber(ADF), hemicellulose, cellulose 및 lignin이 감소하였으며 $H_2O_2(pH 11.5)$를 처리한 후 수세시는 농도가 증가할수록 NDF, hemicellulose 및 lignin은 감소한 반면 ADF, cellulose, 회분은 증가하였다. 알카리성 과산화수소의 농도를 4%로 조정하여 처리하였을 때 pH는 $11.5{\sim}12.5$에서, 온도는 $55^{\circ}C$에서 세포벽구성물질의 분해에 효과적이었으며, 4% $H_2O_2(pH 11.5)$ 처리시 볏짚의 크기가 작을수록 잔류건물 중, hemicellulose, cellulose 및 lignin이 감소하였다. 알카리성 과산화수소의 처리에 의한 in vitro 소화율은 처리농도 및 pH가 증가할수록 볏짚의 크기가 작을수록 증가하였다.

  • PDF

인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향 (Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng)

  • 이성우;이승호;박경훈;장인복;;서문원
    • 한국약용작물학회지
    • /
    • 제25권4호
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Changes in CO2 Absorption Efficiency of NaOH Solution Trap with Temperature

  • Park, Se-In;Park, Hyun-Jin;Yang, Hye In;Choi, Woo-Jung
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.554-561
    • /
    • 2017
  • Under the projected global warming, release of carbon as $CO_2$ through soil organic matter decomposition is expected to increase. Therefore, accurate measurement of $CO_2$ released from soil is crucial in understanding the soil carbon dynamics under increased temperature conditions. Sodium hydroxide (NaOH) traps are frequently used in laboratory soil incubation studies to measure soil respiration rate, but decreasing $CO_2$ gas solubility with increasing temperature may render the reliability of the method questionable. In this study, the influences of increasing temperature on the $CO_2$ capture capacity of NaOH traps were evaluated under $5{\sim}35^{\circ}C$ temperature range at $10^{\circ}C$ interval. Two closed-chamber experiments were performed where NaOH traps were used to capture $CO_2$ either released from acidified $Na_2CO_3$ solution or directly injected into the chamber. The sorption of ambient $CO_2$ within the incubators into NaOH traps was also measured. The amount $CO_2$ captured increased as temperature increased within 2 days of incubation, suggesting that increased diffusion rate of $CO_2$ at higher temperatures led to increases in $CO_2$ captured by the NaOH traps. However, after 2 days, over 95% of $CO_2$ emitted in the emission-absorption experiment was captured regardless of temperature, demonstrating high $CO_2$ absorption efficiency of the NaOH traps. Thus, we conclude that the influence of decreased $CO_2$ solubility by increased temperatures is negligible on the $CO_2$ capture capacity of NaOH traps, supporting that the use of NaOH traps in the study of temperature effect on soil respiration is a valid method.

연안 부영양화 평가: 한국 진해만의 최근 영양 상태(2020-2023) (Evaluating Coastal Eutrophication: Trophic State Trends in Jinhae Bay, South Korea (2020-2023))

  • 김관우;나수진;강종완;이수미;최민규;임재현
    • 한국수산과학회지
    • /
    • 제57권4호
    • /
    • pp.397-409
    • /
    • 2024
  • To evaluate the recent trophic state of Jinhae Bay, field campaigns were conducted in June and August during 2020-2023, measuring environmental factors in both the surface and bottom layers. Temperature differences between layers were greater in August than in June. Surface salinity was decreased in August, probably due to runoff, while bottom salinity remained stable. Dissolved oxygen levels showed a more pronounced stratification in August, leading to hypoxic conditions in the bottom layer. Chemical oxygen demand (COD) was higher at the surface, with rainfall contributing to elevated levels. The eutrophication index (EI) was consistently higher at the bottom across all stations, driven by dissolved inorganic nitrogen (DIN) and phosphate (DIP), with a notable increase in August due to organic matter decomposition. The trophic index (TRIX) was also higher in the bottom layer, with surface TRIX influenced by DIN and salinity, and bottom TRIX by salinity, rainfall, COD, and DIN. The average TRIX for Jinhae Bay was 4.21±1.30, classified as "poor", but comparable to values from other regions. Continuous monitoring of the trophic state is essential for the sustainable management of Jinhae Bay's fisheries.

장기관측자료에 의한 금강하구둑 수문조작에 따른 수질 변화 평가 (The Estimation of Water Quality Changes in the Keum River Estuary by the Dyke Gate Operation Using Long-Term Data)

  • 권정노;김종구;고태승
    • 한국수산과학회지
    • /
    • 제34권4호
    • /
    • pp.348-354
    • /
    • 2001
  • This study was conducted to estimation of change characteristics for water quality by the dyke gate operation in the Keum River estuary. The estimation data made use of surveyed data in Keum River estuary by NERDI (National Fisheries Research and Development Institute) during $1990\~1999$. Shown to compare water quality changes at st. A and st. D in Figure 1, the concentrations of TSS, COD and nutrients at st. A were as high as about $2\~4$ times than those at st. D due to affection of fresh water discharge in the Keum River. The percentages of water quality change at surface water by dyke gate operation in the Keum River estuary were shown that TSS (Total Suspended Solid) was decrease to $56\%,\;47\%$ at st. A and D, and COD (Chemical Oxygen Demand) was increase to $68\%,\;71\%$ at st. A and D, respectively. The changes percentage of DIN (Dissolved Inorganic Nitrogen) by dyke gate operation in the Keum River estuary were increase high to $95\%$ at surface water and $7\sim30\%$ at bottom water, but those of DIP (Dissolved Inorganic Phosphorus) were increase to $2.8\sim8.6\%$ at surface water and $28\%$ at bottom water. The range of fluctuation for water quality at each station by dyke gate operation has shown that salinity and TSS are little better than before dyke gate operation, but COD show highly fluctuation. Also we studied estimation of characteristics of water quality change by the season, COD was increased except the summer, TSS was decreased to all season. DIN was increased to about $61\sim172.1\%$ for all season, but DIP was increased to the spring and decreased to the autumn, DIN enrichment in the estuary by dyke gate operation are interpreted to improvement of organic matter decomposition and nitrification by increasing the residence time and to increase nutrient flux in sediments due to decreasing dissolved oxygen and increasing a deposit matter.

  • PDF