• 제목/요약/키워드: organic loading rate (OLR)

검색결과 45건 처리시간 0.03초

유기물부하에 따른 음식물찌꺼기의 산발효 특성 (Acid Fermentation Characteristic of Food Wastes According to the Organic Loading Rate)

  • 박진식;안철우;장성호
    • 한국환경과학회지
    • /
    • 제15권10호
    • /
    • pp.975-982
    • /
    • 2006
  • This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows. In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As $SCOD_{Cr}/TKN,\;SCOD_{Cr}/T-P$ of thermophilic acid fermented food wastes In organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.

음폐수 부하량에 따른 고온호기성 공정의 처리 양상 (Influence of Food Wastewater Loading Rate on the Reactor Performance and Stability in the Thermophilic Aerobic Process)

  • 장현민;최석순;하정협;박종문
    • 공업화학
    • /
    • 제24권3호
    • /
    • pp.279-284
    • /
    • 2013
  • 본 연구에서는 음식물류 폐기물 자원화 과정에서 생성되는 고농도 음폐수(food wastewater : FWW)를 대상으로 기존의 혐기성 공정의 대안책으로써 고온호기성 소화공정에 대한 성능을 검증하였고 공정 인자를 도출하였다. 이를 위해 수리학적 체류시간(Hydraulic retention time, HRT) 변화 및 유기물 부하량(Organic loading rate, OLR)에 따른 유기물 제거 효율과 안정성을 관찰하였다. 실험 결과 비교적 짧은 HRT를 가진 R1 (HRT : 5일)의 경우 OLR이 증가할 때, 급격한 pH감소가 일어나 심한 공정 저해를 받는 것으로 관찰되었다. 반면 R2 (HRT : 10일)의 경우에는 상대적으로 안정적인 공정 운전 및 효율적인 COD, 유기산 및 lipid 제거가 일어났다. 이는 상대적으로 긴 HRT로 인한 유기산 축적과 같은 공정저해 요인이 해결되어 상대적으로 높은 유기물 처리효율을 나타낸 것으로 생각된다. R1에서는 COD 부하량이 $18.6kgCOD/m^3d$에서 $28.4kgCOD/m^3d$으로 증가함에 따라 급격한 COD 제거율 감소를 보였다. 반면 R2에서는 각 OLR별로 3.61, 7.05, 9.43 그리고 $12.2kgCOD/m^3d$의 높은 COD 제거율을 보였다. 따라서 본 연구에서는 10일 이상의 HRT에서 고온 호기성 소화가 고농도 음폐수 처리에 탁월한 유기물 제거율을 나타냄을 알 수 있었다.

고정 생물막공법에서 부착미생물의 역세에 관한 연구 (A Study of Attached Biomass Back Washing in Fixed Film System)

  • 이창근;김정숙
    • 한국환경과학회지
    • /
    • 제6권3호
    • /
    • pp.219-224
    • /
    • 1997
  • The cloging phenomenon in the fixed film reactor Is shown when biomass growth Is excessive for long operating time. In addition, effluent water Quality gets worse because of detachment of biomass. In this study, we conducted air-backwashing to sustain biomass In reactor to complement these defects. The results of experimental are showed In the following conclusion. The detachment rate was 19.5 - 38.0% when the organic loading rate was 0.40 - 1.32 kg COD/$m^3$/day, the k - backwashing Intensity was 2 L/min(6.7 $m^3$/$m^2$/hrl and the backwashing time was 15 - 19 seconds. And the detachment rate was 32.2 - 58.6 % when the organic loading rate was 1.37 - 2.27 kg COD/$m^2$/day, the backwashing time was 1 - 12 minutes. As orgnic loading rate and backwashing time ale Increased, detachment of fixed biomass Is Increased. The detachment equation with detachment rate(DR, %), backwashing time(BWT, min), fixed biomass concentration(FB. mg/L), and organic leading rate(OLR, kg COD/ms/day) through multiple linear regession was given by the following equation: DR : 17.964 $BWT^{0.1407} FB^{0.0597} OLR^{0.1946}$

  • PDF

호기성 침지형 생물막 여과장치를 이용한 오수처리 (Sewage Treatment using Aerated Submerged Biological Filter(ASBF))

  • 박종웅;송주석
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF

안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가 (Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality)

  • 이윤희;어성욱
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.808-812
    • /
    • 2013
  • A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향 (Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor)

  • 신창하;오대양;김태훈;박주양
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

Slaughterhouse wastewater treatment in a bamboo ring anaerobic fixed-bed reactor

  • Tritt, Wolfgang P.;Kang, Ho
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.70-75
    • /
    • 2018
  • A pilot scale anaerobic fixed-bed with a reactor volume of $2.8m^3$ was built to treat slaughterhouse wastewater. Bamboo rings were chosen as support media mainly because of their cheaper price in underdeveloped countries. Even with their lower porosity and specific surface, the reactor performance showed a maximum 95% COD removal efficiency at an organic loading rate (OLR) of $1kg\;COD/m^3-d$ with its corresponding hydraulic retention time (HRT) of 7.5 d. At a higher OLR of $4.0kg\;COD/m^3-d$, the COD removal efficiency of 75% was achieved with an HRT of 2 d. No big difference in COD removal efficiencies was found between the reactors operated in both upflow and downflow modes. Their operational behavior and effluent characteristics were similar. The effluent COD/TKN ratio of 6.67 at an OLR of $4.0kg\;COD/m^3-d$ was only marginal acceptable range for a subsequent biological denitrification process. Otherwise carbon supplementation is required at a lower OLR.

부직포 여과막 생물반응조의 혐기성 폐수처리에 관한 기초연구 (A Basic Study on the Anaerobic Wastewater Treatment using Nonwoven Fabric Filter Bioreactor)

  • 김택수;배민수;조윤경;조광명
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.464-469
    • /
    • 2005
  • In the nonwoven fabric filter bioreactor (NFBR), both the construction and the operation costs could be saved because a high concentration of microorganism can be maintained in the reactor as in the membrane bioreactor. However, the NFBR process has been investigated only under aerobic and/or anoxic conditions, In this research, a basic anaerobic treatment experiment was performed at $35^{\circ}C$ by feeding an airtight NFBR with a concentrated synthetic organic wastewater. The organic loading rate (OLR) of the NFBR was increased stepwise from $0.25kg\;COD/m^3-day$ to $0.77kg\;COD/m^3-day$ by gradually decreasing the hydraulic retention time from 20 days to 13 days. The results of the research showed that the best COD removal efficiency achieved at the OLR of $0.67kg\;COD/m^3-day$ with a value of 99.3%. The methane content of the produced gas was highest with a value of 61.2% at the OLR of $0.33g\;COD/m^3-day$. The highest methane production rate was $0.89g\;COD/m^3-day$ at the same OLR. The operation was terminated at the OLR of $0.77kg\;COD/m^3-day$ because of the deterioration in COD removal efficiency, gas production rate, and the methane content of the gas. Further researches are recommended for the NFBR to be employed for anaerobic treatment of organic wastewaters.

HADS Pilot Plant를 이용한 음폐수의 혐기성 소화 및 미생물 군집 변화 분석 (Anaerobic digestion for food wastewater using HADS Pilot Plant and analysis of microbial community in the digester)

  • 주동훈;이정민;박성범;성현제;배재상;상병인
    • 유기물자원화
    • /
    • 제18권2호
    • /
    • pp.76-83
    • /
    • 2010
  • 당사는 중온/습식/이상 혐기성 소화공정인 HADS Pilot Plant를 이용하여 국내 음폐수에 대해 유기물 부하(OLR, Organic Loading Rate) 증량 방식을 달리하여 혐기성 소화 테스트를 진행하였다. 그 방식은 연속적이면서 빠르게 OLR을 증량시키는 급속 OLR 증량 운전과 단계적이면서 각 단계별로 적응기를 갖는 계단식 OLR 증량 운전 방식이었다. 그 결과 급속 OLR 증량 운전시에는 불안정한 VFA(Volatile Fatty Acid)/Alkalinity 비율을 보이다가 바이오가스 발생량이 급감하는 결과를 보여주었다. 반면, 계단식 OLR 증량 운전시에는 VFA/Alkalinity의 비율을 0.4이하로 유지하면서 혐기성 소화 운전을 실시한 결과 안정적인 혐기성소화 성능을 보였을 뿐만 아니라, $0.8Nm^3/kgVS_{rem}/d$의 바이오가스 회수 및 85%의 VS(Volatile Solid) 감량이 가능함을 확인하였다. 그리고 OLR 증량 운전 방식에 따라 완전히 다른 결과가 도출되어 각각의 혐기성 소화 운전시의 박테리아 및 메탄생성균 군집의 변화를 T-RFLP(Terminal-Restriction Fragment Length Polymorphism)를 통하여 분석하였다. 그 결과, 급속 OLR 증량 운전시와 계단식 OLR 증량 운전시의 미생물 군집이 달라져 있음을 확인하였고, 이에 따라 동일한 혐기성 소화 공정을 적용하여 음폐수에 대한 혐기성 소화 운전을 진행하였음에도 OLR 증량 운전 방식에 따라 미생물의 반응성 및 주변환경에 대한 내성이 달라질 수 있음을 알 수 있었다.

비귀금속촉매 미생물연료전지의 연속운전을 통한 전기 생산 (Continuous electricity generation in microbial fuel cells with non-precious metal catalysts)

  • 문충만;김동훈
    • 유기물자원화
    • /
    • 제23권1호
    • /
    • pp.45-51
    • /
    • 2015
  • 본 연구에서는 비귀금속 촉매인 iron(II) phthalocyanine (FePc)와 cobalt tetramethoxyphenylporphyrin(CoTMPP)를 환원전극촉매로 이용하여 미생물연료전지의 연속운전을 진행하였다. 연속운전은 유기물 부하 (0.5~3 g COD/L/d)와 HRT (0.25~1 day)의 조건을 달리 운전하여 미생물연료전지의 성능을 평가하였다. 미생물연료전지의 전력밀도는 환원전극의 성능에 크게 영향을 받았으며, 최대전력밀도는 $3.3W/m^3$로 백금을 사용한 미생물연료전지에서 나타났다. 하지만, HRT의 조건을 달리 한 실험에서 FePc를 사용한 미생물연료전지가 백금을 사용한 미생물연료전지와 유사한 성능을 나타냈으며, 연속운전에서 백금 촉매를 대체할 수 있는 적합한 물질로 나타났다. 반면에 CoTMPP를 사용한 미생물연료전지는 연속운전에서 내부 저항의 급격한 증가로 전력밀도가 급격히 감소하였다.