• Title/Summary/Keyword: organic light emitting display

Search Result 613, Processing Time 0.027 seconds

White organic light-emitting devices with a new DCM derivative as an efficient red-emitting material

  • Lee, Mun-Jae;Lee, Nam-Heon;Song, Jun-Ho;Park, Kyung-Min;Yoo, In-Sun;Lee, Chang-Hee;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.940-943
    • /
    • 2003
  • We report the fabrication and the characterization of white organic light-emitting devices consisting of a red-emitting layer of a new DCM derivative doped into 4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}-NPD$) and a blue-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi). The device structure is ITO/PEDOT:PSS/${\alpha}-NPD$ (50 nm)/${\alpha}-NPD$:DCM (5 nm, 0.2 %)/DPVBi (x)/Alq3 (40 nm)/LiF (0.5 nm)/Al. The electroluminescence (EL) spectra consist of two broad peaks around 470 nm and 580 nm with the spectral emission depending on the thickness of DPVBi. The device with the DPVBi thickness of about 20 nm show a white light-emission with the Commission Internationale d'Eclairage(CIE) chromaticity coordinates of (0.33, 0.36). The external quantum efficiency is 2.6% and luminous efficiency is 2.0 lm/W at a luminance of 100 $cd/m^{2}$. The maximum luminance is about 30,270 $cd/m^{2}$ at 13.9 V.

  • PDF

Characterization of Blue Organic Light Emitting Diodes using TPM-BiP (TPM-BiP 청색 형광 재료의 전계발광특성)

  • Chang, Ji-Geun;Shin, Sang-Baie;Ahn, Jong-Myoung;Chang, Ho-Jung;Lee, Hak-Min;Gong, Myoung-Sun;Kim, Min-Young;Kim, Jun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.11-14
    • /
    • 2007
  • For the fabrication of blue color organic light emitting diodes(OLED) with a high performance, 2-TNATA [4,4',4"-tris (2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB [N,N'-bis (1-naphthyl) -N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by the vacuum thermal evaporation. After then, blue color emission layer was deposited using TPM-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl)phosphonate] and GDI602 as a light emitting organic material. Finally, the two kinds of OLEDs with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al and ITO/2-TNATA/NPB/GDI602/Alq_3/LiF/Al$ were prepared by in-situ deposition. The maximum current density and luminance were found to be about $588\;mA/cm^2\;and\;5239\;cd/m^2$ at 12V for the OLED sample with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al$. Color coordinate of blue OLED was x=0.18, y=0.18 (at llV) and the maximum current efficiency was 2.82 cd/A (at 6V) with the peak emission wavelength of 440 nm.

  • PDF

Long-lifetime Green Phosphorescent OLEDs for Low Power Displays

  • Weaver, Michael S.;Adamovich, Vadim I.;Xia, Sean C.;Fiordeliso, James J.;Kwong, Raymond C.;Brown, Julie J.;Lee, Kwan-Hee;Lim, Choon-Woo;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.38-41
    • /
    • 2009
  • We demonstrate a new commercial green phosphorescent organic light emitting device (OLED) in a bottom emission device and top emission microcavity. The bottom and top emitting phosphorescent OLEDs (PHOLED$^{TM}$s) had luminance efficiencies of 60cd/A and 137cd/A respectively, at a luminance of 1,000cd/$m^2$. The top emission microcavity was close to 1953 NTSC color requirements with 1931 CIE color coordinates of 0.231, 0.718. A record green PHOLED lifetime of >3,500hrs to LT95 from 4000cd/$m^2$ is demonstrated for the microcavity device.

  • PDF

Adaptive Color Shifter for RGB Channel Unbalance in Organic Light Emitting Diode Display (OLED Display의 RGB 채널간 불균형 보정을 위한 Adaptive Color Shifter)

  • Cho, Ho-Sang;Jang, Kyoung-Hoon;Kim, Chang-Hun;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1653-1662
    • /
    • 2012
  • Recently, Organic Light Emitting Diode (OLED) that is broadly applied as next generation display has various advantages. However, OLED display causes unbalanced color tone due to the difference of luminance efficiency among luminous elements. In this paper, we propose adaptive color shifter (ACS) to resolve the RGB channel unbalance and to have wide color range of a relatively weak channel using the image processing method. proposed ACS system was simulated using a variety of image. Also, we numerically analyzed using hue histogram, CIE-1931 xyz color space.

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

Properties of Organic light-emitting Diodes with various Electron-transporting layers (전자 수송층에 따른 유기 발광 다이오드 소자의 전기적 특성)

  • Lee, Seok-Jae;Park, Jung-Hyun;Seo, Ji-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.436-437
    • /
    • 2007
  • Organic light-emitting diodes (OLEDs) were fabricated with the electron dominant complex, 4,7-diphenyl-1, 10-phenanthroline (Bphen) into the traditional electron transporting material of tris (S-hydroxyquinoline) aluminum $(Alq_3)$, neat $Alq_3$ and Bphen as electron-transporting layers (ETLs), respectively. Use of the Bphen material results in efficient electron injection and transport, allowing for high luminous efficiency devices. The devices with neat $Alq_3$(Device1), 1:1 mixed $Alq_3$ : Bphen(Device2), and Bphen(Device3) have efficiency of 15.3cd/A, 16.9cd/A, 20.9cd/A, respectively, at $20\;mA/cm^2$. The efficiency characteristic of device with Bphen is best, but the device that is satisfied high efficiency and stability at once is observed in Device2.

  • PDF

Use of Self Assembled Monolayer in the Cathode/Organic Interface of Organic Light Emitting Devices for Enhancement of Electron Injection

  • Manna, U.;Kim, H.M.;Gowtham, M.;Yi, J.;Sohn, Sun-young;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1343-1346
    • /
    • 2005
  • Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.

  • PDF

Study of White Light Emission with Three or Two color in Multi Organic Emitting Layers with DCJTB, DPVBi and Coumarin6

  • Yoo, Seok-Jun;Lee, Chan-Jae;Kim, Dong-Won;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1433-1436
    • /
    • 2007
  • Using a blue emitting DPVBi material and red dopant DCJTB, WOLEDs with and without green emitter C6 added in ETL or HTL have been fabricated. The chromaticity color index of WOLEDs without C6 depends strongly on the doping concentration. In addition, manipulating thickness of emitting layer is similar effect such as controlling weight concentration of dopant. While the white color of WOLEDs with C6 added in ETL or HTL depend on position of C6. WOLED of three colors added green dye have been shown turn-on voltage of 3.25V, and EL efficiency 3.05cd/A @9V, $8102\;cd/m^2$, CIE coordinates (0.30, 0.32).

  • PDF

Efficiency Enhancement of Organic Light Emitting Diode Using $TiO_2$ Buffer Layer

  • Lee, Heui-Dong;Oh, Min-Cheol;Kim, Jae-Chang;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.632-635
    • /
    • 2004
  • We have studied the effect of $TiO_2$ layer deposited by RF magnetron sputtering which is used as an ultra thin hole-injection buffer layer in organic light-emitting diode (OLED). The $TiO_2$ thin film layer prevents metallic ions from diffusing from the ITO layer to the organic layers and improves the balance of hole and electron injections and the interface characteristics between the electrode and the organic layer. With 2 nm thickness of $TiO_2$, the quantum efficiency was improved by 45 % compared to the device fabricated without the $TiO_2$ layer.

  • PDF

Organic Polymer Light-Emitting Devices on a Flexible Plastic Substrate

  • Kanicki, Jerzy;Lee, Shu-Jen;Hong, Yong-Taek;Su, Chia-Chen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.91-94
    • /
    • 2004
  • We report on the opto-electronic properties of red, green, and blue poly (fluorene) co-polymer light-emitting devices (PLEDs) fabricated on a flexible plastic substrate. The plastic substrate used has a multi-layer structure with water vapor and oxygen transmission rates of less than $10^{-5}$ g/$cm^2$-day-atm and $10^{-7}$ cc/$cm^2$-day-atm, respectively. We obtained a wide range of color gamut and a maximum emission efficiency of 0.7, 10, and 1.7 cd/A for red, green, and blue PLEDs, respectively. Finally, a simple equivalent circuit model is proposed to simulate PLED current density-voltage characteristics.

  • PDF