• Title/Summary/Keyword: organic fertilizer.

Search Result 1,516, Processing Time 0.024 seconds

Simultaneous Removal of Organic Pollutants, N, P, and Antibiotics from Liquid Fertilizer using a Microbubble and Catalyst Coupling System (마이크로버블/촉매 융합 시스템을 이용한 액비 내 유기오염물질, N, P 및 항생제 동시 제거)

  • Lee, Dong Gwan;Sim, Young Ho;Paek, Yee;Kwon, Jin Kyung;Jang, Jae Kyung
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.983-991
    • /
    • 2019
  • This study investigated the use of a hydroxyl-radicals-generated microbubble/catalyst (MB/Cat) system for removing organic pollutants, nitrogen, and phosphorous from liquid fertilizer produced by livestock wastewater treatment. Use of the MB/Cat system aims to improve the quality of liquid fertilizer by removing pollutants originally found in the wastewater. In addition, a reduction effect has been reported for antibiotics classified as representative non-biodegradable matter. Samples of liquid fertilizer produced by an aerobic biological reactor for swine wastewater treatment were first analyzed for initial concentrations of pollutants and antibiotics. When the MB/Cat system was applied to the liquid fertilizer, TCOD, TOC, $BOD_5$, and $NH_3-N$, and $PO_4-P$ removal efficiencies were found to be approximately 52%, 51%, 30%, 21%, and 66%, respectively. Additionally, Amoxicillin hydrate was removed by 10%, and Chlortetracycline HCl and Florfenicol were not present at detectable levels These findings confirm that the MB/Cat system can be used with livestock wastewater treatment to improve liquid fertilizer quality and to process wastewater that is safe for agricultural re-use.

Changes in Physicochemical Properties and Microbial Population during Fermenting Process of Organic Fertilizer (혼합발효 유기질비료의 발효과정 중 이화학성 및 미생물밀도 변화)

  • Lee, Jong-Tae;Lee, Chan-Jung;Kim, Hee-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.116-123
    • /
    • 2004
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of organic fertilizer which was made from the mixture of organic materials such as sesame oil cake, fish meal, blood meal, rice bran, ground bone meal, and natural minerals such as illite, crusted oyster shell and loess. They were mixed and fermented for 70 days. The sesame oil cake and rice bran, major ingredients for organic fertilizers, consisted of 7.6 and 2.6% total nitrogen, 3.6 and 4.6% $P_2O_5$, 1.4 and 2.2% $K_2O$, respectively. The ground bone meal included 29.2% $P_2O_5$ and illite included 3.8% $K_2O$. Temperature of organic fertilizer during the fermentation rapidly increased over $50^{\circ}C$ within 2 days after mixing and stabilized similar to outdoor temperature after 40 days. Moisture content decreased from 36.3 to 16.0% after 1 month. C/N ratio of organic fertilizer slightly increased until 30 days and thereafter, it slowly decreased, It resulted from the faster decrease of total nitrogen concentration compared with organic matter. Concentration of $NH_4-N$ in organic fertilizer rapidly increased from 1,504 to $5,530mg\;kg^{-1}$, the highest concentration after 10 days. Meantime, $NO_3-N$ concentration was low and constant about $150mg\;kg^{-1}$ over the whole fermenting period. This result seemed to be due to the high pH. The organic ferfilizer fermented for 70 days was composed of 2.7% N, 2.8% $P_2O_5$, 1.8% $K_2O$, and 35.9% organic matter. Total populations of aerobic bacteria, Bacillus sp. and actinomycetes, after fermenting process, were $12.5{\times}10^{10}$, $45.5{\times}10^{5}$ and $13.6{\times}10^{5}cfu\;g^{-1}$ respectively. Pseudomonas sp. was $71.9{\times}10^{7}cfu\;g^{-1}$ at first, but it rapidly decreased according to the rise of temperature. Yeasts played an important role in the early stage of fermentation and molds did in the late stage.

Effect of application of coffee sludge and dried food waste powder on the growth Peucedanum japonicum Thunberg

  • Jeon, Young-Ji;Hwang, Hyun-Chul;Eun, Jin-A;Jung, Samuel;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.193-204
    • /
    • 2020
  • This experiment was conducted to study the effect of organic fertilizer on the growth of Peucedanum japonicum Thunberg and the change of soil chemical characteristics. The organic matter contents of coffee sludge and dried food waste powder were 44.26 and 51.18%, respectively. These values exceed the organic matter content of organic fertilizers recommended by the Rural Development Administration (RDA) of South Korea by more than 30%. Accordingly, they indicate the possibility of their use as organic fertilizers. The results from the analysis of soil properties after cultivation showed that the organic matter content of coffee sludge amended soils was two-fold higher than that of dried food waste powder amended soils. However, the content of available phosphorus was two times lower in the coffee sludge amendments. It is expected that the dried food waste powder was actively used to decompose organic substances, and that phosphoric acid was added by the soil microorganisms used to decompose organic substances. In terms of Peucedanum japonicum Thunberg growth, leaf discoloration was observed for all treatments except with the standard rate of dried food waste powder. The standard rate of dried food waste powder also produced relatively better results than other treatments with regard to other growth characteristics such as root length (34.08 cm), root diameter (0.78 cm), and fresh root weight (4.77 g plant-1). Therefore, the standard rate of dried food waste powder produced better results than other treatments and can be used as an organic fertilizer in the growth of Peucedanum japonicum Thunberg.

Effect of Different Organic Fertilizers on Performance and Disease Occurrence in Seedling 'Niitaka' Pear Trees (유기질 비료의 시용이 '신고' 배 실생묘의 생육 특성과 병 발생률에 미치는 영향)

  • Li, Xiong;Kim, Wol-Soo;Choi, Hyun-Sug
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • The study was conducted to investigate effects of different organic fertilizers on 'Niitaka' pear tree performances in a controlled greenhouse. The four 'Niitaka' pear seedling trees per treatment were grown in a greenhouse for 6 months. Each pot was filled with control, rice bran (RB), coffee bran compost (CBC), and the mixture (RCC) of RB + CBC + chitin incubated compost (CIC). Each pot was filled with 1:1:1 (v/v/v) of soil : sand : fertilizer, and control, RB, CBC, CIC, and RCC were applied as treatments. Root fresh weights and root activities were increased by all the organic fertilizers, especially by RCC. RCC treated trees had the highest tree height and thickest tree trunk, and all organic fertilized trees showed increased tree growth compared to the control. The more diseased and damaged degrees on the leaf by spider mites increased leaf falling rates on all the treatments. The reduced diseased and healthy leaves were found on RCC treated trees that had better tree performance. Also, all the organic fertilized trees seemed to prevent the occurrence of disease in the leaf. Therefore, the organic fertilizer applications could be a good strategy to obtain better tree performance and maintain healthy seedlings in the nursery market or young organic pear orchard.

Application of Organic Fertilizer Preparation for Increasing of Coverage and Growth of Cool Season Turfgrasses (한지형 잔디의 피복 율과 생육 증진을 위한 유기질비료 제제의 살포)

  • Koo, Jun Hwak;Heo, Hyug Jae;Kim, Yang Sun;Yun, Jeong Ho;Chang, Seog Won;Jeon, Jong Yeob;Chang, Tae hyun
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.268-277
    • /
    • 2015
  • Organic fertilizer preparation was developed with organic materials to improve growth and qualities of cool-season turfgrass species. Organic fertilizer preparation were contained with essential macronutrient elements and organic matter for growth of cool season turfgrass. Four preparations of organic fertilizers were tested on creeping bentgrass (Agrostis palustris Huds) cultivar Penn-A1 and Kentucky bluegrass (Poa pratensis L.) mixed cultivars (Midnight 33%, Moonlight 33%, and Prosperity 33%) by one time application on fifty days after sowing. Two species of cool season turfgrasses were evaluated on turfgrass coverage, growth on NDVI (Normalized Difference Vegetation Index) and qualities from fall season to spring season in sod producing farm. It were found significantly difference found on turfgrass coverage, turf color, chlorophyll contents and growth increase on two species of cool season turfgrasses. Turfgrass coverage, chlorophyll content, turf color and growth increase of organic fertilizer preparation were significantly increased on creeping bentgrass cultivar and Kentucky bluegrass mixed cultivar for six time investigation in spring season. These results may indicate that the use of some preparation is beneficial for sod producing sod and turfgrass management.

Monitoring for Change of Soil Characteristics by repeated Organic Supply of Comport and Green Manures in Newly reclaimed Organic Upland Field (신규 개간 유기농경지에서 가축분 퇴비와 녹비작물 연용에 따른 밭 토양의 이화학적 특성 변화 모니터링)

  • Ok, Jung-Hun;Cho, Jung-Lai;Lee, Byung-Mo;An, Nan-Hee;Shin, Jae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.813-827
    • /
    • 2015
  • This study was conducted to evaluate the effect of organic inputs on soil properties in a newly reclaimed organic soils. The soil of the experiment site was very low in soil fertility and the physico-chemical properties were poor. Several organic input treatments with different source of nutrient were placed, including compost in combination with green manures for organic agricultural practices, chemical fertilizers for conventional agricultural practices, and control without fertilizer. The experiment was conducted with continuous cropping system during 3 years. The chemical properties concentration in compost+green manure treatment was increased continually compare to control and chemical fertilizer treatment, and closed to the recommended rate of fertilizer. The organic matter value for compost+green manure treatment was increased from 0.86~0.96% to 2.00~2.29% by continuous nutrient supply of compost and green manure. However, further investigation on increasing of organic matter value for 3 years is necessary to monitor carefully during the long-term because it will help to clarify the all mechanisms of organic matter on organic input application way. The available phosphate value for compost+green manure treatment was generally increased from 21.9~27.1 mg/kg to 182.0~394.1 mg/kg. In case of exchange cation, the concentration for compost+green manure treatment was increased during 2 years within the range to the recommended rate of fertilizer, however, it is expected to cause a rather over supply for 3 years.

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

Investigation of Nitrate Contamination Sources Under the Conventional and Organic Agricultural Systems Using Nitrogen Isotope Ratios (질소 동위원소비를 이용한 관행농업과 유기농업에서의 질산태 질소 오염원 구명)

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.481-490
    • /
    • 2005
  • Nitrate contamination in water system is a critical environmental problem caused by excessive application of chemical fertilizer and concentration of livestock. In order to prevent further contamination, therefore, it is necessary to understand the origin of nitrate in nitrogen loading sources and manage the very source of contamination. The objective of this study was to examine the nitrate contamination sources in different agricultural system by using nitrogen isotope ratios. Groundwater and runoff water samples were collected on a monthly basis from February 2003 to November 2003 and analyzed for nitrogen isotopes. The nitrate concentrations of groundwater in livestock fanning area were higher than those in conventional and organic fanning area and exceeded the national drinking water standard of 10mg N/ l. The ${\delta}^{15}N$ranges of chemical fertilizer and animal manure were - 3.7${\sim}$+2.3$\textperthousand$ and +12.5${\sim}$26.7$\textperthousand$, respectively. The higher ${\delta}^{15}N$ of animal manure than those of chemical fertilizer reflected isotope fractionation and volatilization of '''N. The different agricultural systems and corresponding average nitrate concentrations and ${\delta}^{15}N$ values were: conventional farming, 5.47mg/e, 8.3$\textperthousand$; organic fanning, 5.88mg/e, 10.1$\textperthousand$; crop-livestock farming, 12.5mg/e, 17.7%0. These data indicated that whether conventional or organic agriculture effected groundwater and runoff water quality. In conclusions, relationship between nitrate concentrations and ${\delta}^{15}N$ value could be used to make a distinction between nitrate derived from chemical fertilizer and from animal manure. Additional investigation is required to monitor long-term impact on water quality in accordance with agricultural systems.

Tuber quality of Ashwagandha (Withania somnifera Duanal) affected by different growth conditions

  • Kaliyadasa, Ewon;Jayasinghe, Lalith;Peiris, Sriyani
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.151-161
    • /
    • 2019
  • Ashwagandha (Withania sominifera Duanal) is an important medicinal herb with increased demand after discovering its anti-stress and sex stimulating properties that are attributed to the presence of biologically active alkaloid compounds. The aim of this study was to elucidate a proper agro technological package that ensures the optimum growth of Ashwagandha to obtain the finest quality without degrading the pharmacologically active constituents. Mixtures of organic and inorganic fertilizers were combined with direct seeding and transplanted as four different treatments in this study. The fresh and dry weights of the tubers were recorded up to 12 months starting from two months after sowing (MAS) while the shoot height, root length, number of leaves, fresh and dry weights of the shoot and the root with a shoot ratio of up to 6 MAS were determined. The results revealed that the growth of Ashwagandha was not affected significantly by the method of planting, type of fertilizer or their combinations during most of the harvests. However, tubers harvested at 6 MAS had the highest recorded dry tuber weight per plant in all four treatments compared to the early harvests where two direct seeded treatments had the best results. Comparison of the phytochemical compounds showed that direct seeding with organic fertilizer had the highest recorded values for alkaloid and withaferine A contents with a lower percentage of fiber compared to the treatments with inorganic fertilizer. In conclusion, direct seeding with organic fertilizer and tubers harvested at 6 MAS are recommended as the best cultivation conditions and harvesting stage to obtain high quality tubers of Ashwagandha, respectively.

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.