• Title/Summary/Keyword: organic electronics

Search Result 716, Processing Time 0.036 seconds

Display Panel for AMOLED with 64 x 64 Pixels on 2' Plastic Substrate

  • Song, Chung-Kun;Ryu, Gi-Seong;Choe, Ki-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.356-358
    • /
    • 2004
  • In this paper we fabricated and succeeded to demonstrate a test panel for AMOLED on 2" glass and PET substrate. The test panel consisted of an array of 64 x 64 pixels in which OLEDs was driven by pentacene TFT. OTFTs were made of the inverted staggered structure and employed polyvinylphenol as the gate insulator and pentacene thin film as the active layer, producing the filed effect mobility of 0.3$cm^2$/V.sec and on/off current ratio of $10^5$. OLEDs were composed of TPD for HTL and Alq3 for EML with 35nm thick each, generating green monochrome light.

  • PDF

Enhancement of the luminous efficiency of organic light-emitting diodes utilizing a wide-bandgap impurity doped emitting layer

  • Choo, D.C.;Bang, H.S.;Kwack, B.C.;Kim, T.W.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1447-1450
    • /
    • 2007
  • The electrical properties of organic lightemitting devices (OLEDs) with wide-bandgap impurity-doped emitting layers (EML) were investigated. While the luminous efficiency of OLEDs with a NPB or a DPVBi-doped $Alq_3$ EML did not vary significantly with the current density, that of the OLEDs with a BCP-doped $Alq_3$ EML changed dramatically.

  • PDF

Low temperature curable organic gate insulator for organic field-effect transistors

  • Kim, Joo-Young;Jung, Myung-Sup;Lee, Sang-Yoon;Kim, Jong-Min;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.664-666
    • /
    • 2008
  • Low-temperature curable organic insulator was prepared through blending of polyimide type base resin and cross-linking agent. The newly developed resin can be formed into films using a wet process and cured at $130^{\circ}C$. Using the low temperature cured film as the gate dielectric layer, the field effect mobility of $0.15\;cm^2/V{\cdot}s$ was obtained from a pentacene field effect transistor in the saturation regime and no hysteresis behavior was observed in transfer curves.

  • PDF

Synthesis and Characterization of DNA-Templated Nanostructures: Toward Molecular Electronics

  • Lee, Jeong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • Molecular electronics has been the subject of intese research for many years because of the fundamental interest in molecular charge transport and potential applications, such as (bio)nanosensors and molecular memory devices. Molecular electronics requires a method for making reliable eletrical contacts to singlemolecules. To date, several approaches have been reported: scanning-probe microscopy, mechanical break junctions, nano patterning, and direct deposition of electrode on a self-assembled monolayers. However, most methods are laborious and difficult for large-scale application and more importantly, cannot control the number of moleucles in the junction. Recently, DNA has been used as a template for metallic nanostructures (e.g., Ag, Pd, and Au nanowires) through DNA metallization process. Furthermore, oligodeoxynucleotides have been tethered to organic molecules by using conventional organic reactions. Collectively, these techniques should provide an efficient route toward reliable and reproducible molecular electronic devices with large-scale fabrication. Therefore, I will present a paradigm for the fabrication of moleuclar electronic devices by using micrometer-sized DNA-singe organic molecule and DNA triblock structures.

  • PDF

Photolithography process investment of water soluble photoresist and Organic thin film by using it. (수용성 포토레지스트와 이를 이용한 유기 박막의 photolithography 공정 연구)

  • Kim, Kwang-Hyun;Kim, Gun-Ju;Ryu, Ki.-Sung;Kim, Tae-Ho;Song, Jung-Kun
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.497-500
    • /
    • 2004
  • In this paper, we developed a new photolithography process which used a water-soluble photoresist instead of organic solvent soluble photoresist, defined pentacene thin film. And pentacene OTFTs were fabricated with the water- soluble photolithography process.

  • PDF

Organic Thin Film Transistors with Cross-linked PVP Gate Dielectrics by Using Photo-initiator and PMF

  • Yun, Ho-Jin;Baek, Kyu-Ha;Park, Kun-Sik;Shin, Hong-Sik;Ham, Yong-Hyun;Lee, Ga-Won;Lee, Ki-Jun;Wang, Jin-Suk;Do, Lee-Mi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.312-314
    • /
    • 2009
  • We have fabricated pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics. The gate dielectrics is composed of PVP, poly[melamine-coformaldehyde] (PMF) and photo-initiator [1-phenyl-2-hydroxy-2-methylpropane-1-one, Darocur1173]. By adding small amount (1 %) of photo-initiator, the cross-linking temperature is lowered to $115^{\circ}C$, which is lower than general thermal curing reaction temperature of cross-linked PVP (> $180^{\circ}C$). The hysteresis and the leakage current of the OTFTs are also decreased by adding the PMF and the photoinitiator in PVP gate dielectrics.

  • PDF

Present Status and Future Prospective of Organic EL

  • Tsutsui, Tetsuo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.53-76
    • /
    • 2000
  • Multi-color organic electroluminescent (EL) displays have already been commercialized, and the simple extensions of present technologies on organic EL can not be a target for basic research anymore. Future prospect of research on organic electroluminescent devices are described from the view point of possible future break-through. Three aspects, perspective for further increase of device efficiencies, possibility of simplified device structures and possible use of thick organic layers, are discussed.

  • PDF

The Fabrication and an Analysis on the characteristics of Red OLED by various Organic Dyes (유기물 색소에 따른 적색 유기 발광 소자의 제작 및 특성 분석)

  • 최상건;이무상;노병규;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.265-268
    • /
    • 2000
  • Organic electroluminescent(EL) devices have been expected to be useful in novel-type flat-panel displays. This paper has fabricated and analyzed a red organic EL device with the use of organic dyes, such as DCMI and Nile Red. In this paper, the light emitting layer consists of tris-(8-hydroxyquiniline) aluminum(Alq$_3$) doped with organic dyes.

  • PDF

Organic Light Emitting Transistors for Flexible Displays

  • Kudo, Kazuhiro;Endoh, Hiroyuki;Watanabe, Yasuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.137-140
    • /
    • 2005
  • Organic light emitting transistors (OLET) which are vertically combined with the organic static induction transistor (OSIT) and organic light emitting diode (OLED) are fabricated and the device characteristics are investigated. High luminance modulations by relatively low gate voltages are obtained. In order to realize the flexible electronic circuits and displays, we have fabricated OSIT on plastic substrates. The OSIT fabricated on plastic substrate show almost same characteristics comparing with those of nonflexible OSIT on glass substrate. The OLET described here is a suitable element for flexible sheet displays.

  • PDF

Fabrication and Characterization of High-Performance Thin-Film Encapsulation for Organic Electronics (유기반도체용 고성능 박막 봉지재의 제조 및 평가)

  • Kim, Nam-Su;Graham, Samuel
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1049-1054
    • /
    • 2012
  • Continued advancements in organic materials have led to the development of organic devices that are thin, flexible, and lightweight and that can potentially be used as low-cost energy-conversion devices. While these devices have many advantages, the environmentally induced degradation of the active materials and the low-work-function electrodes remain a valid concern. Hence, many vacuum deposition processes have been applied to develop low-permeation barrier coatings. In this work, we present the results pertaining to the developed thin-film encapsulation. Multilayer encapsulation involves the use of $SiO_x$ or $SiN_x$ with parylene. The effective water vapor transmission rates were investigated using a Ca-corrosion test. The integration of the developed barrier layers was demonstrated by encapsulating pentacene/$C_{60}$ solar cells, and the results are presented.