• Title/Summary/Keyword: organic contaminants

Search Result 381, Processing Time 0.026 seconds

Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

  • Kumari, Priyanka;Lee, Joonhee;Choi, Hong-Lim
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2016
  • We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System (양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술)

  • Ok, Yong-Sik;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.177-184
    • /
    • 2003
  • Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.

Total Diet Studies as a Tool for Ensuring Food Safety

  • Lee, Joon-Goo;Kim, Sheen-Hee;Kim, Hae-Jung;Yoon, Hae-Jung
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.221-226
    • /
    • 2015
  • With the diversification and internationalization of the food industry and the increased focus on health from a majority of consumers, food safety policies are being implemented based on scientific evidence. Risk analysis represents the most useful scientific approach for making food safety decisions. Total diet study (TDS) is often used as a risk assessment tool to evaluate exposure to hazardous elements. Many countries perform TDSs to screen for chemicals in foods and analyze exposure trends to hazardous elements. TDSs differ from traditional food monitoring in two major aspects: chemicals are analyzed in food in the form in which it will be consumed and it is cost-effective in analyzing composite samples after processing multiple ingredients together. In Korea, TDSs have been conducted to estimate dietary intakes of heavy metals, pesticides, mycotoxins, persistent organic pollutants, and processing contaminants. TDSs need to be carried out periodically to ensure food safety.

Hot Air Injection/Extraction Method for the Removal of Semi-Volatile Organic Contaminants from Soils (토양내 저휘발성 유류오염물 제거를 위한 고온공기 주입/추출기술 연구)

  • Gu Chung-Wan;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Contamination of soils and groundwater by leakage of petroleum compounds from underground storage tanks (USTs) has become great environmental issues. Conventional methods such as soil vapor extraction (SVE) used for the remediation of unsaturated soils contaminated with volatile organic compounds might not be applied for the removal of semi-volatile organic compounds such as diesel fuels and PCBs, which have low volatility and high hydrophobicity. The objective of this study is to develop a hot air injection method to remove semi-volatile compounds. Additionally, operation parameters such as temperature, air flow rate, and water content are evaluated. Experimental results show that diesel ranged organics (DROs) are removed in the order of volatility of organic compounds. As expected, removal efficiency of organics is highly dependent on the temperature. It is considered that more than $90\%$ of organic contaminants whose carbon numbers range between 17 and 22 can be removed efficiently by the hot air injection-extraction method (modified SVE) over the $100^{\circ}C$. It is also found that increased air flow rate resulted in high removal rate of contaminants. However, air flow rate over 40 cc/min is not effective for the operation aspects, due to mass transfer limitation on the volatilization rate of the contaminants. The effect of the water content on the decane removal is minimal, but some components show large dependence on the removal efficiency with increasing water content.

Desorption of organic Compounds from the Simulated Soils by Soil Vapor Extraction (인공토양으로부터 토양증기추출법에 의한 유기화합물의 탈착 현상에 관한 실험 연구)

  • 이병환;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.101-114
    • /
    • 1998
  • Soil vapor extraction (SVE) is known to be an effective process to remove the contaminants from the soils by enhancing the vaporization of organic compounds using forced vapor flows or applying vacuum through soils. Experiments are carried out to investigate the effects of the organic contaminants, types of soils, and water contents on the removal efficiency with operating time. In the study, simulated soils include the glass bead which has no micropore, sand and molecular sieve which has a large volume of micropores. As model organic pollutants, toluene, methyl ethyl ketone, and trichloroethylene are selected. Desorption experiments are conducted by flowing nitrogen gas. Under the experimental conditions, it is found that there are linear relationships between logarithm of removal efficiency and logarithm of number of pore volumes. The number of pore volumes are defined as the total amount of air flow through the soil column divided by the pore volume of soil column. For three organic compounds studied, the removal rate is slow for no water content, while the number of pore volumes for removal of organic compounds are notably reduced for water contents up to 37%. For the removal of dense organic compound, such as trichloroethylene, a large number of pore volumes are needed. Also, the effects of the characteristics of simulated soils on the removal efficiency of organic compounds are studied. After the characterization of soil surface, porosity of soil columns and types of contaminants, the results could provide a basis for the design of SVE process.

  • PDF

Electrokinetic Ions Injection into Kaolinite and Sand for Bioremediation (카올리나이트와 모레에서의 Bioremediation을 위한 Electrokinetic 이온 주입 특성)

  • 이호창;한상재;김수삼;오재일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.405-410
    • /
    • 2001
  • Bioremediation is a degradation process of existing organic contaminants in soils and groundwater by indigenous or inoculated microorganisms. This process can provide economical solution as well as safe and effective alternative in remediation technologies. However, it has been suggested that the rate of bioremediation process of organic contaminants by microorganisms can be limited by the concentration of nutrients and TEAs(Terminal Electron Accepters). In in-situ bioremediation, conventional pumping techniques have been used for supplying these additives. However, the injection of these additives is difficult in low permeable soils, and also hindered by preferential flow paths resulting from heterogeneities in high permeable ground. Therefore, the Injection of chemical additives is the most significant concern in in-situ bioremediation. Most recently, electrokinetic technique has been applied into the bioremediation and the injection characteristics under electrokinetics have not been examined in various soil types. Therefore, in this study, electrokinetic injection method is investigated in kaolinite and sand, and the concentration of ammonium(nutrients) and sulfate(TEAs) in soil is presented.

  • PDF

A Study on the Emission Characteristics of Gaseous Organic Contaminants from Building Materials and Newly Constructed Apartments (신축 공동주택 및 건축자재에서의 오염물질 방출 특성)

  • Kim Yun-Deok;Lee Yun-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.563-570
    • /
    • 2006
  • We investigated the emission characteristics of gaseous organic contaminants from building materials and newly constructed apartments. The emission test for building materials was done with small chamber method, and field measurements in newly constructed apartment were carried out by Korea Standard Test Method for Indoor Air Quality. First, the emission test by small chamber showed that the TVOC emission from building materials was much higher than formaldehyde. On the other hand, as expected, considerably high concentration of both TVOC and HCHO was detected in the new apartment.

Photoactivity of $TiO_2$-coated Bead for Organic Contaminants in Photocatalytic System (광촉매 시스템을 이용한 $TiO_2$ 코팅비드의 광분해 활성)

  • Park, Seong-Ae;Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1579-1582
    • /
    • 2007
  • The purpose of this study is to compare degrading performance of organic contaminants in aqueous solution using photocatalyst and find an optimal condition for decomposing non-degradable matters. The parameters of this research is light intensity and state of photocatalytic material within reactor. The results showed that Type 3 (terms of plastic beads : $500^{\circ}C$, 3hr) has the greatest reactivity.

  • PDF

Photocatalytic-Photooxidation of Halogen Derivatives of Phenols in Aqueous Solution (방향족 탄화수소 할로겐 유도체의 광촉매-광산화)

  • 김삼혁;권규혁;정오진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.233-240
    • /
    • 1999
  • Industrial waste which highly loaded by halogenide phenols was photooxidized by laboratory-scale photooxidation of these organic impurities in the presence of aerotropic and titaniumdioxide as photocatalyst. The disapperance of organic compounds was determined as a function of the irradiation time. Some contaminants such as 2-chlorophenol, 2-bromphenol, 3-bromphenol, 4-bromphenol, 2,4-dibromophenol and 2,6-dibromophenol were photodegraded separately to obtain information on the reaction rates, reactivities, and reaction mechanisms of the photooxidation, and on the stoichiometric correlation between organic reactant and inorganic products concentration in the course of the photocatalytic photoreaction.

  • PDF