• Title/Summary/Keyword: organic composts

Search Result 113, Processing Time 0.017 seconds

Assays of Maturity and Antifungal Activity against Plant Pathogen during the Animal Manure Composting Process (가축분 퇴비화 과정에서 부숙도 및 퇴비의 항균활성 검정)

  • Seo, Myung-Chul;So, Kyu-Ho;Park, Won-Mok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.285-294
    • /
    • 1999
  • Changes of chemico-physical properties and mturitiy during pig manure composting were analysed using three kinds of bulking agents with rice hull(T1), rice hull and extruding hull mixture (T2, 1:1, v/v), and extruding hull(T3). During composting process, temperature of T1, T2 and T3 were maintained over $50^{\circ}C$ for 31, 21, and 35 days respectively. Organic matter content of each treatment was decreased from 82.2%, 82.0%, and 82.8% to 70.5%, 68.9% and 69.7% and pH increased to 8.85, 9.91, and 8.80, respectively. Total nitrogen content of all treatments gradually decreased, but C/N ratio, phosphorous, and potassium content did not, show any changes during composting process. Both germination rate and early growth were tested using radish seeds for composting maturity. From those results, it was concluded that all treatments were stabilized after 45th day and extruding hull(T3) added compost was superior to others. The test of suppressive effect showed that all treatment have no effect against Fusarium oxysporum, Alternaria altemata, Botrytis cinerea. Compost supplemented with rice hull showed an inhibitory effect after 30th days, while compost supplemented with rice hull and extruding hull(T2) had an inhibitory effect during all period against Rhizoctonia solani. But treatment with extruding hull(T3) added compost did not have any inhibitory effect against Rhizoctonia solani. Only 63th samples in T1 and T2 treatment showed inhibitory effect against Colletoerichum gloeosporioides. However, T3 did not. Suppressive effect of extracts from 67 kinds of composts was investigated in vitro against plant pathogens, such as Fusauum oxysporum. Alternaria alternata, Colletotrichum gloeospoioides, Rhizoctonia solani, and Botrytis cinerea. Thirty two of them showed inhibitory effect against more than one phytopathogen, nine against one pathogen, four against two, six against three, six against four, and seven against five.

  • PDF

Heavy Metal Speciation in Compost Derived from the Different Animal Manures (이축분종(異畜糞種) 퇴비에서의 중금속 화학종분화(化學種分化))

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-282
    • /
    • 2004
  • Composting animal manure is one of feasible treatments that reserves some portion of nutrients of manure. Although the application of compost to arable land has many advantages, the repeated cultivation of the agriculture land will accumulate the level of heavy metals in the soil which is potentially hamful to people and animals. Therefore it is important to know the characteristics concentration and species of heavy metals in a variety of chemical fonns than just total content of the metal. Because the metals in different forms have different mobilities and bioavailabilites. The aim of this study was to examine the total content and the chemical forms of the heavy metals; Cr, Ni, Cu, Zn, As, Cd and Pb in the animal manure composted with sawdust or rice hull as a bulking agent. A total of 75 compost samples were collected throughout the country and classified into the three groups in accordance with the characteristics of raw materials: swine manure, poultry manure, and mixed(swine + poultry + cattle)manure. The compost samples were analyzed for total metal content and fractionated by sequential chemical extractions to estimate the quantities of metals: exchangeable, adsorbed, organically bound, carbonate and residual. The results showed that the heavy metal concentrations in all compost samples were lower than the maximum acceptable limits by the Korea Compost Quality Standards. The concentrations of heavy metals in the swine manure compost were higher than those of both the poultry and the mixed manure compost except for Cr. Zn and Cu concentrations of three different compost ranged from 157 to 839 mg Zn/kg DM(dry matter) and from 47 to 458 mg Cu/kg DM, depending on the composition of animal manures. The predominant forms for extracted metals were Cr, Ni, Zn, As and Ph, residual; Cu, organic; and Cd, carbonate. The results suggested that the legal standards for composts should be reexamined to revise the criteria on the total metal content as well as metal speciation.

Studies on the Cellulase Producing Microorganisms(Part I) -Isolation of the Cellulase Producing Molds and their Cultural Conditions- (Cellulase 생성균(生成菌)에 관(關)한 연구(硏究) (제1보(第1報)) -유용균(有用菌)의 분리(分離) 및 그 배양조건(培養條件)에 대(對)하여-)

  • Kim, Chan-Jo;Choi, Woo-Young
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.83-88
    • /
    • 1969
  • 94 Cellulase producing strains were isoated from soils, composts, rotten woods and straws, and gastric contents and feces of herbivorous animals in various places. Among them, the strain MC-9, MC-10, MC-53 and MC-61 were found to be highly active in the degradation of carboxy methyl cellulose. Their cultural conditions adequate for the cellulase formation and effects of inorganic salts and various organic substances added to the wheat bran media were investigated. The results obtained are as follows; 1. Optimum conditions for the cellulase formation were MC-9: pH 5.5, temp. $35^{\circ}C$, incubation time 5 days, MC-10: pH 5.5-6.0, temp. $30^{\circ}C$, incubation time 5 days, MC-53: pH 3.5, temp. $30^{\circ}C$, incubation time 5 days, MC-61: pH 3.5-4.0, temp. 30-$35^{\circ}C$, incubation time 5 days. 2. Their cellulase activity in their optimum conditions were MC-9: CMC-LP(liquefying power). 87.7%, CMC-SP(saccharifying power) 3.20 glucose mg./gm. of the cultures/min., MC-10: CMC-LP 82.9%, CMC-SP 2.48 glucose mg./gm. of the cultures/min., MC-53: CMC-LP 72.4%, CMC-SP 1.76 glucose mg./gm. of the cultures/min., MC-61: CMC-LP 87.1%, CMC-SP 2.08 glucose mg./gm. of the cultures/min. 3. Additions of inorganic salts to the wheat bran media were not significant for the cellulase formation, but additions of soybean film and orange-peel pomace promoted the CMC-liquefying power 3 to 5 percent in wheat bran cultures of the strains.

  • PDF