• Title/Summary/Keyword: organic acid production

Search Result 739, Processing Time 0.024 seconds

Metabolomics comparison of rumen fluid and milk in dairy cattle using proton nuclear magnetic resonance spectroscopy

  • Eom, Jun Sik;Kim, Eun Tae;Kim, Hyun Sang;Choi, You Young;Lee, Shin Ja;Lee, Sang Suk;Kim, Seon Ho;Lee, Sung Sill
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.213-222
    • /
    • 2021
  • Objective: The metabolites that constitute the rumen fluid and milk in dairy cattle were analyzed using proton nuclear magnetic resonance (1H-NMR) spectroscopy and compared with the results obtain for other dairy cattle herds worldwide. The aim was to provide basic dataset for facilitating research on metabolites in rumen fluid and milk. Methods: Six dairy cattle were used in this study. Rumen fluid was collected using a stomach tube, and milk was collected using a pipeline milking system. The metabolites were determined by 1H-NMR spectroscopy, and the obtained data were statistically analyzed by principal component analysis, partial least squares discriminant analysis, variable importance in projection scores, and metabolic pathway data using Metaboanalyst 4.0. Results: The total numbers of metabolites in rumen fluid and milk were measured to be 186 and 184, and quantified as 72 and 109, respectively. Organic acid and carbohydrate metabolites exhibited the highest concentrations in rumen fluid and milk, respectively. Some metabolites that have been associated with metabolic diseases (acidosis and ketosis) in cows were identified in rumen fluid, and metabolites associated with ketosis, somatic cell production, and coagulation properties were identified in milk. Conclusion: The metabolites measured in rumen fluid and milk could potentially be used to detect metabolic diseases and evaluate milk quality. The results could also be useful for metabolomic research on the biofluids of ruminants in Korea, while facilitating their metabolic research.

Broken rice in a fermented total mixed ration improves carcass and marbling quality in fattened beef cattle

  • Kotupan, Salisa;Sommart, Kritapon
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1331-1341
    • /
    • 2021
  • Objective: This study aimed to determine the effects of replacing cassava chips with broken rice in a fermented total mixed ration diet on silage quality, feed intake, ruminal fermentation, growth performance, and carcass characteristics in the final phase of fattening beef cattle. Methods: Eighteen Charolais-Thai native crossbred steers (average initial body weight: 609.4±46 kg; average age 31.6 mo) were subjected to three ad libitum dietary regimes and were maintained in individual pens for 90 d before slaughter. The experimental design was a randomized complete block design by initial age and body weight with six replicates. The dietary regimens used different proportions of broken rice (0%, 16%, and 32% [w/w] of dry matter [DM]) instead of cassava chips in a fermented total mixed ration. All dietary treatments were evaluated for in vitro gas production and tested in in vivo feeding trials. Results: The in vitro experiments indicated that organic matter from broken rice was significantly more digestible than that from a cassava-based diet (p<0.05). Silage quality, nutrient intake, ruminal fermentation characteristics, carcass fat thickness, and marbling score substantially differed among treatments. The ruminal total volatile fatty acids, propionate concentration, dietary protein intake, and digestibility increased linearly (p<0.05) with broken rice, whereas acetate concentration and the acetate:propionate ratio decreased linearly (p<0.05) with broken rice (added up to 32 g/kg DM). Broken rice did not influence plasma metabolite levels or growth performance (p>0.05). However, the marbling score increased, and the carcass characteristics improved with broken rice. Conclusion: Substitution of cassava chips with broken rice in beef cattle diets may improve fattened beef carcass quality because broken rice increases rumen fermentation, fatty acid biosynthesis, and metabolic energy supply.

Preparation of Nanoporous Activated Carbon with Sulfuric Acid Lignin and Its Application as a Biosorbent (황산 가수분해 잔사 리그닌을 이용한 나노 세공 활성탄 제조 및 친환경 흡착제로의 활용 가능성 평가)

  • Hwang, Hyewon;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon material. Comparison study was also conducted by production of activated carbon from coconut shell (CCNS), Pinus, and Avicel, and each activated carbon was characterized by chemical composition, Raman spectroscopy, SEM analysis, and BET analysis. The amount of solid residue after thermogravimetric analysis of biomass samples at the final temperature of $750^{\circ}C$ was SAL > CCNS > Pinus > Avicel, which was the same as the order of activated carbon yields after catalytic activation. Specifically, SAL-derived activated carbon showed the highest value of carbon content (91.0%) and $I_d/I_g$ peak ratio (4.2), indicating that amorphous large aromatic structure layer was formed with high carbon fixation. In addition, the largest changes was observed in SAL with the maximum BET specific surface area and pore volume of $2341m^2/g$ and $1.270cm^3/g$, respectively. Furthermore, the adsorption test for three kinds of organic pollutants (phenol, 2,4-Dichlorophenoxyacetic acid, and carbofuran) were conducted, and an excellent adsorption capacity more than 90 mg/g for all activated carbon was determined using 100 ppm of the standard solution. Therefore, SAL, a condensed structure, can be used not only as a nanoporous carbon material with high specific surface area but also as a biosorbent applied to a carbon filter for remediation of organic pollutants in future.

Fermentation Properties of Rice Added Yogurt Made with Various Lactic Acid Bacteria (유산균주의 종류에 따른 쌀 첨가 요구르트의 발효 특성)

  • Bae, H.C.;Paik, S.H.;Nam, M.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.677-686
    • /
    • 2004
  • The objective of this experiment was to select the best strain of lactic acid bacteria for the manufacture of new type of yogurt with rice powders. Changes in pH, titratable acidity, viable cell counts, viscosity, organic acid contents, carbohydrates during fennentation were monitored and sensory evaluation were examined. The yogurt added with 4% rice or skim milk powders and L. salivarius ssp. salivarius culture did not reach pH 4.5, because the production of acids in this media for the culture was weak. The yogurt added with 4% rice or skim milk powder with L. casei, the pH was low and the titratable acidity was high, and therefore the quality of yogurt after 8 hours from fermentation was not high. The yogurt added with 4% rice or skim milk powders with a mixed culture of B. longum, L. acidophilus, Streptococcus salivarius ssp. thermophilus was considered best for achieving pH 4.5 and titratable acidity of 1.0 % from 8 to 14 hours. The yogurt with a mixed culture had more acetic acid. Galactose was accumulated when L. salivarius ssp. salivarius or the mixed culture were used for fermenting yogurt. In sensory evaluation, the yogurt with the mixed culture received high overall sensory score. From these results, a mixed culture of B. longum, L. acidophilus, Streptococcus salivarius ssp. thermophilus was identified as the best for the manufacture of yogurt added with rice powder.

Enhancement of Fermentative Hydrogen Production by Gas Sparging (기체 sparging에 의한 수소 발효의 효율 향상)

  • Kim, Dong-Hoon;Han, Sun-Kee;Kim, Sang-Hyoun;Bae, Byung-Uk;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • The effect of gas sparging on continuous fermentative $H_2$ production was investigated using external gases ($N_2$, $CO_2$) with various flow rates (100, 200, 300, 400 ml/min). Gas sparging showed a higher $H_2$ yield than no sparging, indicating that the decrease of $H_2$ partial pressure by gas sparging had a good effect on $H_2$ fermentation. Especially, $CO_2$ sparging was more effective in the reactor performance than $N_2$ sparging. The composition of butyrate, the main metabolic product of $H_2$ fermentation by Clostridium sp., was much higher in $CO_2$ sparging. $H_2$ production increased with increasing flow rate only in $CO_2$ sparging. The best performance was obtained by $CO_2$ sparging at 300 ml/min, resulting in the highest $H_2$ yield of 1.65 mol $H_2/mol$ hexoseconsumed and the maximum $H_2$ production of 6.77 L $H_2/g$ VSS/day. Compared to $N_2$ sparging, there could be another beneficial effect in $CO_2$ sparging apart from lowering down the $H_2$ partial pressure. High partial pressure of $CO_2$ had little effect on $H_2$ producing bacteria but inhibitory effect on other microorganisms like lactic acid bacteria and acetogens which were competitive with $H_2$ producing bacteria.

  • PDF

Study on Supplementing Effects or Feeding Systems of Molasses and Urea on Methane and Microbial Nitrogen Production in the Rumen and Growth Performances of Bulls Fed a Straw Diet

  • Huque, K.S.;Chowdhury, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • An experiment with growing bulls were conducted to determine the effect of supplementation of a straw (S) with 15% molasses and 3% urea as an intimate mix (UMS) on its dry matter (DM) intake and digestibility (DMD) and reduction of methane ($CH_4$) production from fermentation in vitro of the straw. In the next experiment, the feeding of the UMS was compared with that of the feeding of molasses and urea in meals (DS) or in lick blocks (DSUMB) as supplements to straw. The UMS feeding increased daily intake of straw DM ($89.5 g{\cdot}kgW^{-0.75}$, p < 0.01) and digestible crude protein (DCP 333 g, p < 0.001) and nitrogen (N) balances ($508mg{\cdot}kgW^{-0.75}{\cdot}d^{-1}$, p < 0.01) of the bulls than the feeding of 'S' ($65g{\cdot}kgW^{-0.75}$, 55 g and $8.0mg{\cdot}kgW^{-0.75}{\cdot}d^{-1}$, respectively). It also increased the digestibility of DM ($594g{\cdot}kg^{-1}$, p < 0.05), organic matter (OM, $641g{\cdot}kg^{-1}$, p < 0.05), CP ($619g{\cdot}kg^{-1}$, p < 0.001) and acid detergent fibre (ADF, 773, p < 0.05). The $CH_4$ emitted per g of DOM apparently fermented in the rumen (DOMR) was 91.0 ml in the 'S' and reduced (p < 0.05) to 61.6 ml in the UMS. The feeding of the UMS when compared with that of the DS or DSUMB also gave a higher straw intake (1.77% of live weight, LW, p <0.01) and ADF digestibility ($516g{\cdot}kg^{-1}$, p < 0.05) than the other diets (1.52% or 1.55% LW and 472 or $490g{\cdot}kg^{-1}$, respectively) in association with the increased microbial N yield in the rumen (14.1, 5.62 or $17.0g{\cdot}kg^{-1}$ DOMR, respectively, p < 0.05), daily LW gains (233, 125 or 93 g, respectively, p < 0.05) and feed conversion ratios of the diets (26.0, 56.1, or 57.6 g feed/g LW gain, p > 0.05, respectively). It can be concluded that molasses and urea feeding as an intimate mix with straw (UMS) increased its digestion and intake in association with a reduced methane emissions in the rumen. When compared with that of their feeding in meals or in lick blocks as supplements to straw the UMS gave the highest straw in take and digestion and live weight gains of growing bulls concurring the finding that the UMS system may be the best way of molasses and urea feeding to ruminants fed straws.

Diets with Different Forage/Concentrate Ratios for the Mediterranean Italian Buffalo: In vivo and In vitro Digestibility

  • Fabio, Zicarelli;Calabro, Serena;Piccolo, Vincenzo;D'Urso, Simona;Tudisco, Raffaella;Bovera, Fulvia;Cutrignelli, Monica I.;Infascelli, Federico
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • In vivo and in vitro digestibility of 6 diets with a forage to concentrate ratio (F/C) ranging from 100 to 50:50 (diet 1: all hay, diet 2: 90:10, diet 3: 80:20, diet 4: 70:30, diet 5: 60:40, diet 6: 50:50) were investigated using 6 buffaloes in a $6{\times}6$ Latin square design. For the in vivo trial, the individual faeces of buffaloes were collected 3 times per day for 7 days. Individual pooled faeces and samples of each diet were analysed for chemical composition and insoluble acid ash (AIA) contents in order to estimate the coefficient of apparent digestibility (ADC). On the last day of the in vivo trial a sample of faeces was collected from each animal and used as inoculum for the in vitro test, using the gas production technique (IVGPT). The in vivo organic matter digestibility (ADC) rose as the percentage of concentrate increased up to the 70:30 (F/C) diet (67.01, 73.03, 78.06 and 79.05, respectively for diets 1, 2, 3 and 4); the other two diets (60:40 and 50:50 F/C) unexpectedly did not follow this trend (75.11 and 79.06, respectively for diet 5 and 6). However, these data agree with the results of the in vitro trial. The ADC was positively correlated with the dOM (p<0.001), but not with the gas production at different times; cumulative gas production recorded at the end of incubation (OMCV) showed an irregular trend and was not closely correlated to degraded OM. Estimation of in vivo digestibility from in vitro fermentation data was acceptable, despite leaving room for improvement.

Studies on the Amylase Production by Bacteria (세균(細菌)에 의(依)한 Amylase생산(生産)에 관한 연구(硏究))

  • Park, Yoon-Joong
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 1970
  • 1. Isolation and identification of amylase-producing bacteria. The powerful strain A-12 and S-8 were respectively isolated from air and soil after screening a large number of amylase-producing bacteria. Their bacterial characteristics have been investigated and it has been found that all characteristics of strain A-12 and S-8 are similar to Bac. subtilis of Bergey's manual except for the acid formation from a few carbohydrates and the citrate utilization, i.e., the strain A-12 shows negative in the citrate utilization, and the acid formation from arabinose and xylose, S-8 shows negative in the acid formation from xylose. 2. Amylase production by Liquid cultures with solid materials. Several conditions for amylase production by strain A-12 in stationary cultures have been studied. The results obtained are as follows. (1) The optimum conditions are:temperature $35^{\circ}C$, initial pH 6.5 to 7.0 and incubation time 3 to 4 days. (2) The amylase production is not affected by the preservation period of the stock cultures. (3) Among the various solid material, the defatted soy bean is found to be the best for t1e amylase production. However, the alkali treatment of the defatted soy bean gives no effect contrary to the cage of defatted rape seed. The addition of soluble starch to the alkali extract of defatted soy bean shows the increased amylase production. (4) Up to 1% addition of ethanol to carbon dificient media gives the improved amylase production, whereas the above effect is not found in the case of carbon rich media. (5) The amylase production can be increased 2.5 times when 10% of defatted soy bean is admixed to cheaply available wheat bran. (6) The excellent effect is found for amylase production when 20% of wheat bran is admixed to defatted dry milk which is a poor medium. The activity is found to be $D^{40^{\circ}}_{30'}$ 7,000(L.S.V. 1,800) in 10% medium. (7) No significant effect is observed due to the addition of various inorganic salts. 3. Amylase production by solid cultures. Several conditions for amylase production by strain A-12 in wheat bran cultures have been studied and the results obtained are as follows. (1) The optimum conditions: are temperature $33^{\circ}C$, incubation lime 2 days, water content added 150 to 175% and the thickness of the medium 1.5cm, The activity is found to be $D^{40^{\circ}}_{30'}$ 36,000(L.S.V. 15,000) (2) No significant effect is found in the case of the additions of various organic and inorganic substances.

  • PDF

Molecular Cloning and Sequence Analysis of Coelomic Cytolytic Factor-like Gene from the Midgut of the Earthworm, Eisenia Andrei (줄지렁이 중장에서 분리한 Coelomic cytolytic factor-유사 유전자의 클로닝 및 염기서열 분석에 관한 연구)

  • Baek, Nam Sook;Lee, Myung-Sik;Park, Sang-Kil;Kim, Dae-hwan;Tak, Eun-Sik;Ahn, Chi-Hyun;Sun, Zhenjun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.64-73
    • /
    • 2008
  • The cDNA of CCF (coelomic cytolytic factor)-like gene (EC 3.2.1.16), a kind of glycosyl hydorlase, was isolated and cloned from the midgut of the earthworm Eisenia anderi. The size of nucleotide sequence appeared to be 1,152 bp and its predicted coding region was composed of 384 amino acid residues including the initiation methionine. The 17 residues at N-terminal end in the deduced amino acid sequence were regarded to be a signal peptide. Based on the amino acid sequence analysis, it appeared that this CCF-like protein could belong to glycosyl hydrolase family 16 (GHF16) and showed a high sequence homology of about 79~99% with CCF and CCF-like proteins from other earthworm species. The CCFs and CCF-like proteins from various earthworm species exhibited a 100% homology in the polysacchride-binding motif and glucanase motif. It has been reported that the CCFs isolated from E. fedita appeared to show a broader pattern recognition specificity than those from other earthworm species because this species resides in decaying organic matter showing very high microbial activity, implying that CCF-like protein isolated in this study from E. andrei might exhibit a broad substrate specificity that is a useful characteristic for industrial application. A phylogenetic analysis using the deduced amino acid sequences of CCF-related proteins through the BLASTX revealed that GHF16 families could be divided into three groups of metazoa, viriplantae and eubacteria subfamily. Subsequently the CCF-related proteins of metazoa subfamily could clearly be subgroup into lophotrochozoan and edysozoan type including a deuterostome origin. Further understanding of the biological properties of E. andrei CCF-like protein should be addressed to regulate the ${\beta}$-D-glucan hydrolysis and production for the industrial uses.

  • PDF

Characteristics of Volatile Fatty Acids Release During the Hydrolysis of Rice Straw (볏짚의 가수분해과정중 유기산 생성 특성)

  • Hong, Seung-Gil;Shin, JoungDu;Heo, Jeong-Wook;Park, Woo-Kyun;Shin, Hyun-Seon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.36-43
    • /
    • 2012
  • Objective of this study was to investigate the effects of pre-treatment of rice straw by sizes(3cm, milled), temperatures($35^{\circ}C\;and\;55^{\circ}C$), with/without NaOH treatment, and RPM on the characteristics of volatile fatty acids production. The concentration of total volatile fatty acids (TVFAs) was increased with the hydrolyzed time. Concentration of VFAs in milled rice straw was higher than that in 3 cm cut. With the alkali treatment, the concentration of TVFAs were sharply increased, which showed 3 times higher than non-treatment. Concentration of VFAs was high at 150 rpm at $35^{\circ}C$, and at 80rpm and 200 rpm at $55^{\circ}C$. Among them acetic acid was dominant, which showed the similar increase with TVFAs. It was also observed that in the case of fibrous material, the contents of cellulose and hemi-cellulose were reduced a little, but no change in lignin.