• Title/Summary/Keyword: organelle volume

Search Result 4, Processing Time 0.019 seconds

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu;Kim, Tae-Keun;Shin, Yeonhee;Tak, Eunyoung;Song, Gi-Won;Oh, Yeon-Mok;Kim, Jun Ki;Pack, Chan-Gi
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.851-860
    • /
    • 2021
  • Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

Improvement of Productivity by Forest Tree Breeding Work in Korea (우리나라에서의 임목육종(林木育種)에 의(依)한 생산성(生産性) 증가(增加))

  • Ryu, Jang Bal;Shim, Sang Yung
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.4
    • /
    • pp.382-388
    • /
    • 1988
  • Improvement of productivity by forest tree breeding work in Korea was estimated for a few important tree species. Progenies of 17 plus trees of red pine (Pines densiflora) outgrew by 57 percentage compared with progenies of unselected trees at age 15. If best three families are selected among the 17, more than double in volume grow-th is expected. The hybrid Pinus rigida ${\times}$ P. taeda showed more than double volume growth compare to P. rigida at a southern plantation at age 15. However, the superiority of the hybrid decreased at northern plantations, mainly because of low coldhardiness of the hybrid. At a northern plantation, the hybrid grew less than the P. rigida on upper hill, while the hybrid grew much better than the P. rigida on flat area. Another hybrid Populus alba ${\times}$ P. glandulosa grew faster than both parents by two to two and half times according to planting sites at age 10. Introduction of Pinus rigida also showed increased volume growth. Volume increase by selection of best five provenances among 45 at age 12 was estimated as 53 percent compare to progenies of plus trees in Korea, Additional 19 percent of volume increase was expected by selection of the best families within the best provenances. Annual production of chestnuts reached about 70,000 M/T by planting resistant clones to chestnut gall wasp (Dryocosmus kuriphilus), which killed almost all susceptible trees. Although polyploid trees and mutants have been produced by colchicine treatments in over 10 tree species, none of them is economically important Remarkable improvement of productivity is expected by biotechnology in future through selection, hybridization, introduction of foreign genes at cell, cell organelle and gene level, and gene transformation. At present, mass propagation of superior planting materials by tissue culture will increase the productivity.

  • PDF

Ultrastructural Differentiation of the Vacuole in Mesophyll Tissues of Orostachys (바위솔속 엽육조직 세포 내 액포의 미세구조 분화 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • In the present study, ultrastructural features of the mesophyll tissue have been investigated in Crassulacean acid metabolism (CAM)-performing succulent Orostachys. A large central vacuole and numerous small vacuoles in the peripheral cytoplasm were characterized at the subcellular level in both developing and mature mesophyll cells. The most notable feature was the invagination of vacuolar membranes into the secondary vacuoles or multivesicular bodies. In many cases, tens of single, membrane-bound secondary vacuoles of various sizes were found to be formed within the central vacuole. multivesicular bodies containing numerous small vesicles were also distributed in the cytoplasm but were better developed within the central vacuole. Occasionally, electron-dense prevacuolar compartments, directly attached to structures appearing to be small vacuoles, were also detected in the cytoplasm. One or more huge central vacuoles were frequently observed in cells undergoing differentiation and maturation. Consistent with the known occurrence of morphologically distinct vacuoles within different tissues, two types of vacuoles, one representing lytic vacuoles and the other, most likely protein storage vacuoles, were noted frequently within Orostachys mesophyll. The two types coexisted in mature vegetative cells but did not merge during the study. Nevertheless, the coexistence of two distinct vacuole types in maturing cells implies the presence of more than one mechanism for vacuolar solute sorting in these species. The vacuolar membrane is known to be unique among the intracellular compartments for having different channels and/or pumps to maintain its function. In CAM plants, the vacuole is a very important organelle that regulates malic acid diurnal fluctuation to a large extent. The membrane invagination seen in Orostachys mesophyll likely plays a significant role in survival under the physiological drought conditions in which these Orostachys occur; by increasing to such a large vacuolar volume, the mesophyll cells are able to retain enormous amounts of acid when needed. Furthermore, the mesophyll cells are able to attain their large sizes with less energy expenditure in order to regulate the large degree of diurnal fluctuation of organic acid that occurs within the vacuoles of Orostachys.

Electron Microscopic Studies on Olfactory Bulbs in the Vertebrates by Phylogenetics (계통발생에 따른 척추동물의 뇌후구에 대한 전자현미경적 연구)

  • Choi, W.B.;Chung, Y.H.;Seo, J.E.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.31-68
    • /
    • 1985
  • Authors are trying to unveil the ultrastructural organization of olfactory bulb, which has been summerized under light microscopic level or communicated only in some detail in different view point until now. For the critical point of view, since the phylogenetical approach will give the ultimate value in the correlative study between structural and functional bases (Brodal, 1969), the present study was carried out light and electron microscopic analyses of the structures of the neurons and synaptic organizations in olfactory bulbs from different animals in phylogenetical scale. We selected each one species from five animal classes: the house rabbit(Oryctolagus cuniculus var. domesticus [Gmelin]) from Mammalia, the domestic fowl (Gallus gallus domesticus Brisson) from Aves, the viper (Agkistrodon hylys [G.P. Pallas]) from Reptilia, a frog (Bombiana orientalis Boulenger) from Amphibia and the crussian carp (Carassius carassius [Linne]) from Pisces. For light microscopic study, samples were fixed in 10% formalin and paraffin sections were stained with hematoxylin-eosin. For the electron microscopic study, the tissues were fixed by perfusion through the heart or immersion with 1% paraform-aldehyde-glutaraldehyde mixture (phosphate buffer, pH 7.4), and final tissue block trimmed under dissecting microscope were osmicated (1% OsO4), they were embedded in Araldite or Epon 812, and ultrathin sections were made by LKB-V ultratome following the inspection of semi-thin sections stained with toluidine blue-borax solution. Ultra-thin sections contrasted with uranyl acetate and lead citrate were observed with JEM 100CX electron microscope. We have summerized our morphological analyses as follows: 1. The olfactory bulb of rabbit, viper and frog shows the eight layers of fila olfactoria, glomerular, external granular, external plexiform, mitral cell, internal plexiform, internal granular, medullary but domestic fowl shows the five layers of glomerular, fibrillar, mitral, granular and medullary and the three layers of fibrilla, glomerular and medullary in crussian carp. The sharpness of demarcation between the layers shows deferential tendency according to phylogenetical order. 2. Mitral cells of vertebrate have large triangular or oval shape with spherical nuclei which contain not so much chromatin. The cytoplasm contains numerous cell organelles, of which Nissl's bodies or granular endoplasmic reticula arranged as parallel strands. Development of granular endoplasmic reticula were declined as the phylogentical grade is going lower. 3. Tufted cells of all animal are mostly spindle or polygonal contour and contain oval nuclei which located in periphery of cytoplasm. The nuclei of rabbit, fowl, viper and frog has relatively space chromatin, but a nucleus of crussian carp contain irregularly aggregated chromatin in karyoplasm. Their cytoplasmic volume and cell organelle contents are in between those of mitral cell and granular cell. They contain moderate amount of mitochondria, granular endoplasmic reticula, a few Golgi complex, polysomes, lysosome, etc. 4. Granule of cells of all the vertebrate amimals studied exhibit similar features; cells and their dense nuclei show spherical or oval contour, and they have the thin rim of cytoplasm which contain only a few cell organelles. 5. In rabbit, the soma of mitral cells were in contact with boutons with two types of synaptic vesicles, that is, round and flat vesicles, especially flat vesicles in boutons were showing reciprocal synapses. However, in domestic fowls, vipers, frogs and crussian carps, there were found boutons showing only spherical synaptic vesicles. 6. The boutons containing round synaptic vesicles were made contact with the some of tufted cell of olfactory bulb in the rabbits, fowls, vipers and frogs, but no synaptic boutons were observed in soma of tufted cells in crussian carps. In the frogs, there were observed dendrites were contact with the soma of tufted cells. 7. In the neuropils of plexiform, granular and glomerular layers olfactory bulbs in the vertebrate, the synapses were axo-large dendrites, axo-median and small dendrites, dendrodendritic, and axo-axonal contacts. However, in the neuropil of crussian carps, synapses were observed only in glomerular layer.

  • PDF