• Title/Summary/Keyword: order of reaction

Search Result 4,352, Processing Time 0.033 seconds

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Synthesis of Maltosyl-$\beta$-Cyclodextrin through the Reverse Reaction of Pullulanase (Pullulanase의 Reverse Reaction을 이용한 Maltosyl-$\beta$-Cyclodextrin의 합성)

  • 한일근;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.444-449
    • /
    • 1991
  • Synthesis of maltosyl-$\beta$-cyclodextrin using maltose ($G_2$) and $\beta$-cyclodextrin ($\beta$-CD) as substrates through the reverse reaction of pullulanase was investigated. The optimal conditions for the condensation reaction were as below: mixing ratio of maltose to $\beta$-CD of 12.7, mixed substrate concentration of 70% (w/w, 70 g/100 ml $H_2O$), and amount of pullulanse of 350 units/100 ml. The concentration of synthesized maltosyl-P-CD concentration was reached up to 2.31 g/100 rnl at above reaction conditions, which corresponded the conversion yield of 43% (w/w, g of branched-CD/g of CD). The synthesis of maltosyl-$\alpha >\gamma >\beta$-CD was also attempted, and conversion yield was in the order of a>y>J3-CDs. Condensation reaction between various maltooligosaccharides ($G-1\sim G_6$ showed that maltose was the most effective oligorner for condensation reaction with $\beta$-CD. To increase the conversion yield various alcohols were added into the reaction mixture, amyl alcohol was found to be the most acceptable alcohol for increasement of convesion yield which increased from 43.0 to 83.0% upon addition of same volume of amyl alcohol into the reaction mixture.

  • PDF

Kinetics of the Bromine-Exchange Reaction of Gallium Bromide with n-Butyl Bromide in 1,2,4-Trichlorobenzene and in Nitrobenzene (1,2,4-트리클로로벤젠용액 및 니트로벤젠용액 내에서의 브롬화갈륨과 브롬화 n-부틸의 브롬 교환반응)

  • Kwun Oh Cheun;Choi Sang Up
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.479-485
    • /
    • 1976
  • The rate of the bromine-exchange reaction between gallium bromide and n-butyl bromide in 1,2,4-trichlorobenzene and in nitrobenzene was measured at 19, 25 and 40$^{\circ}C$., using n-butyl bromide labelled with Br-82. The results indicated that the exchange reaction was second order with respect to gallium bromide and first order with respect to n-butyl bromide. The third-order rate constant determined at $19^{\circ}C.$ is 1.15{\times}10^{-4} l^2{\cdot}mole^{-2}{\cdot}sec^{-1}$ in 1,2,4-trichlorobenzene and $4.21{\times}10^{-4} l^2·$$mole^{-2}{\cdot}sec^{-1}$ in nitrobenzene. The activation energy, the enthalpy of activation and the entropy of activation for the exchange reaction were also determined.

  • PDF

Synthesis of 4,5-Diphenyl Imidazolone and Studies on its Fluorescent Effect (4,5-Diphenyl-Imidazolone의 合成 及 螢光效果에 關한 硏究)

  • Jeon, Poong-Jin;Kim, Hyung-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.70-77
    • /
    • 1957
  • 4,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 904,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 704,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}C$. . Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85%. Reaction temperature 150∼110$^{\circ}C$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}C$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes. . and dye-time 15 minutes. . and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes.

  • PDF

Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol (환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론)

  • Kim, Taehoon;park, Sungyurb;Park, Sunghoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1079-1084
    • /
    • 1998
  • Reaction kinetics between 4,4'-dihexyl methane diisocyanate($H_{12}MDI$) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.

  • PDF

A study on the reaction rate and the antioxidant effects of caramelization reaction mixtures (Caramelization 온도별 반응속도와 반응 생성물의 유지에 대한 항산화효과에 관한 연구)

  • 최인덕;안명수
    • Korean journal of food and cookery science
    • /
    • v.11 no.4
    • /
    • pp.396-400
    • /
    • 1995
  • The antioxidant effects in soybean oil was investigated by browning reaction mixtures formed by sugar and reaction temperatures above 110$^{\circ}C$. 0.1 M solution of xylose, glucose and sucrose were heated at 110, 120, 130, 140 and 150$^{\circ}C$ for 24 hrs respectively. A reaction rate constant(k), activation energy (Ea) and Q$\sub$10/ value were determined by color intensity that was measured absorbance at 490 nm in each temperature. Soybean oil containing the ethanol extracts taken from the browning reaction mixtures that were heated at 110, 130 and 150$^{\circ}C$ was stored in an incubator kept at 45.0${\pm}$1.0$^{\circ}C$ for 24 days. The results are as follows: 1. When 0.1 M solution of xylose, glucose and sucrose were heated at 110$^{\circ}C$ and 120$^{\circ}C$, the intensity of glucose browning mixtures was the highest, but heated at 150$^{\circ}C$, the color intensity increased in order of xylose > glucose > sucrose after 24 hrs. 2. The reaction rate constant (k) was increased rapidly above 140$^{\circ}C$ and appeared maximum at 150$^{\circ}C$, esp. xylose was the highest. The activation onergy (Ea) of xylose was the highest as 93.28 Joule/mole and the Q$\sub$10/ value of xylose was appeared 1.28. Q$\sub$10/ value was also the highest in xylose. 3. The browning reaction mixtures that were heated at 110$^{\circ}C$ appeared little antioxidant effects. But, in heated at 130$^{\circ}C$ and 150$^{\circ}C$, the antioxidant effects appeared in sucrose browning reaction mixtures. Therefore, in browning reaction mixtures that heated above 110$^{\circ}C$, only sucrose browning reaction mixtures appeared antioxidant effects and xylose, glucose appeared little antioxidant effects. On the contrary xylose and glucose increased peroxide values of soybean oil.

  • PDF

Changes in Free Amino Acids and Sugars in Water-soluble Extracts of Fresh Ginseng during Browning Reaction (수삼물추출물의 갈변반응중 아미노산과 당류변화)

  • 김만욱;박래정
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.122-131
    • /
    • 1981
  • An aqueous extract s of fresh ginseng roots was heated at loot for 64 hrs. and the changes of color intensity, pH and the amount of free sugars and amino acids during the various intervals of the heating time were investigated. Color intensity and absorbance of the solution at 490nm were increased in proportion to the length of the heating time. Most of brown pigments produced during the treatment were water soluble, and pH 5.1 at initial stage of the solution, was slightly decreased at the final stages of the reaction. Sucrose, glucose and fructose were major free sugars in ginseng roots, and the amounts of sucrose was over 90 % of total free sugars. Sucrose. was largely decreased approximately 50%, by 64 hrs of the treatment, whereas sharp increase in the amount of glucose and fructose was observed during the reaction in the solution. The observed increase in reducing sugars, glucose and fructose was presumed due to hydrolysis of sucrose. Evidently, glucose and fructose were not important factor to control the browning reaction of the solution. Most of free amino acids and peptides except alanine and isoleucine especially arginine, serine and threonine, were sharply decreased up to 40 : 50% of the original concentration within 2 hrs. Accordingly, the content of free amino acids and peptides seems to be extremely important factor to control the browning reaction in ginseng. A free amino acid, presumed to be nor-leucine, was found in fresh ginseng root on the basis of re mention on liquid chromatography. Kinetic analysis of the browning reaction indicated a pseudo second order with respect to amino acid concentration at the initial stage.

  • PDF

Antioxidant Activity of Amino Acid-Xylose Browning Reaction Products 2. Isolation of Antioxigenic Substrates from Browning Reaction Products by TLC and Dialysis (Amino 산-Xylose 갈변반응 물질의 항산화성 2. TLC와 투석을 이용한 항산화성 갈변물질의 분리)

  • YOU Byeong-Jin;LEE Kang-HO;LEE Jong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.212-218
    • /
    • 1986
  • In order to isolate antioxigenic substrates, the browning reaction products of xylose and various amino acids were analysed by TLC and dialysis. Rf values of browning reaction products of xylose and hydrophobic amino acids separated on silica gel TLC plate were shown in the range of 0.38 to 0.56 and that of basic amino acids was around 0.2. Browning reaction products made from xylose and Trp were separated on TLC into four bands with Rf values of 0.25, 0.55, 0.81 and 0.91 respectively. Among these the bands with Rf values of 0.25 and 0.55 appeared having strong antioxidant activity. The band of Rf 0.55 which showed the highest activity was positive to Prochazka reagent and had an absorption maximum at 275 nm. In dialysis of the xylose-Trp browning reaction products, the undialysed fraction (inner solution) was repsponsible to the antioxidant activity, which was separated into two bands with Rf values of 0.25 and 0.55 on TLC. The inner fractions of the browning products of xylose and His or Arg were also apparent in antioxdant activity.

  • PDF

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi;Jung, Deok-Ho;Chae, Su-In;Kwon, Young-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1679-1684
    • /
    • 2011
  • Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).