• 제목/요약/키워드: oral squamous carcinoma cells

검색결과 180건 처리시간 0.027초

Anti-proliferative and Anti-telomerase Activity of Curcuma Rhizome Extract on Oral Squamous Cell Carcinoma and Osteosarcoma Cells

  • Kim, Kyung-Jin;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • 제32권4호
    • /
    • pp.135-141
    • /
    • 2007
  • Anti-proliferation of methanol extract of Curcuma rhizome on oral squamous cell carcinoma (KB) and osteosarcoma (HOS) cells were investigated. In order to elucidate the involvement of telomerase inhibitory activity as a part of anti-proliferative effect of Curcuma rhizome on cancer cells, we measured telomerase activity in Curcuma rhizome extract-treated cancer cells. The concentration inhibited cell proliferation to 50% $(IC_{50})$ of the methanol extract of Curcuma rhizome against oral squamous cell carcinoma (KB) cells and osteosarcoma (HOS) cells were 21.30 ${\mu}g/ml$ and 39.3${\mu}g/ml$, respectively. The methanol extract of Curcuma rhizome showed inhibitory telomerase inhibitory effect which is required for cancer cell immortality. Therefore, it seems that the anticancer effect of methanol extract of Curcuma rhizome is at least partially due to telomerase inhibitory effect. Five fraction samples were prepared according to its polarity differences and analyzed anti-proliferative effects of each fraction samples on oral squamous cell carcinoma and osteosarcoma cells. Anticancer effect was observed in dichloromethane, and ethylacetate fractions. The highest anticancer effect was found in dichloromethane fraction which had $IC_{50}$ value of 23.3 ${\mu}g/ml$ and 10.5${\mu}g/ml$ against oral squamous cell carcinoma (KB) cells and osteosarcoma (HOS) cells, respectively.

Recombinant Azurin from Pseudomonas aeruginosa Induces Apoptotic Cell Death in Oral Squamous Carcinoma Cells

  • Kim, Uk-Kyu;Jeon, Hyun-Jun;Lee, Moo-Hyung;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.35-42
    • /
    • 2010
  • The use of bacteria in the treatment of cancer has a long and interesting history. The use of live bacteria in this way however has a number of potential problems including toxicity. Purified low molecular weight bacterial proteins have therefore been tested as anticancer agents to avoid such complications. Oral cancer is a widely occurring disease around the world and these lesions are typically very resistant to anticancer agents. In our present study we investigated the effects of purified recombinant azurin from Pseudomonas (P.) aeruginosa against YD-9 (p53-positive) human oral squamous carcinoma cells. Azurin showed cytotoxic effects against these cells in a dose dependent manner. The cell death accompanied by this treatment was found to be characterized by chromatin condensation and apoptotic bodies. Azurin treatment was further found to increase the expression of p53 The stabilization of p53 and induction of apoptosis in YD-9 cells by azurin suggests that it has potentially very strong anticancer properties in oral squamous carcinoma.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

Bradykinin-induced $Ca^{2+}$ signaling in human oral squamous cell carcinoma HSC-3 cells

  • Sohn, Byung-Jin;Kang, Ji-Ah;Jo, Su-Hyun;Choi, Se-Young
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.73-79
    • /
    • 2009
  • Cytosolic $Ca^{2+}$ is an important regulator of tumor cell proliferation and metastasis. Recently, the strategy of blocking receptors and channels specific to certain cancer cell types has emerged as a potentially viable future treatment. Oral squamous cell carcinoma is an aggressive form of cancer with a high metastasis rate but the receptor-mechanisms involved in $Ca^{2+}$ signaling in these tumors have not yet been elucidated. In our present study, we report that bradykinin induces $Ca^{2+}$ signaling and its modulation in the human oral squamous carcinoma cell line, HSC-3. Bradykinin was found to increase the cytosolic $Ca^{2+}$ levels in a concentration-dependent manner. This increase was inhibited by pretreatment with the phospholipase C-${\beta}$ inhibitor, U73122, and also by 2-aminoethoxydiphenyl borate, an inhibitor of the inositol 1,4,5-trisphosphate receptor. Pretreatment with extracellular ATP also inhibited the peak bradykinin-induced $Ca^{2+}$ rise. In contrast, the ATP-induced rise in cytosolic $Ca^{2+}$ was not affected by pretreatment with bradykinin. Pretreatment of the cells with either forskolin or phorbol 12-myristate 13-acetate (activators of adenylyl cyclase and protein kinase C, respectively) prior to bradykinin application accelerated the recovery of cytosolic $Ca^{2+}$ to baseline levels. These data suggest that bradykinin receptors are functional in $Ca^{2+}$ signaling in HSC-3 cells and may therefore represent a future target in treatment strategies for human oral squamous cell carcinoma.

황련(黃連)이 구강암 세포에서의 세포자멸사에 미치는 영향 (Coptidis Rhizoma Extract induces Apoptotic Cell Death in YD-10B Cell)

  • 이재근;박숙자;김상찬;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제22권2호
    • /
    • pp.50-59
    • /
    • 2009
  • Objectives : The aim of this study was conducted that CRE (Coptidis Rhizoma Extract) induces apoptosis in YD-10B cells, human oral squamous carcinoma cell line. Methods : In this study, YD-10B cells were exposed to CRE (0.03-0.30 mg/ml), for 6-24 hours. We measured the effects of CRE on the changes of cell viability and cell membrane, TUNEL assay of CRE-treated YD-10B cell. Results : In this study, CRE caused a decrease of viability in YD-10B cells, human oral squamous carcinoma cell line. When YD-10B cells were treated with CRE, cells showed dose-dependent manner apoptotic cell death. Conclusions : These results suggest that CRE may be potential therapeutic approach in the clinical management of oral squamous cell carcinoma.

  • PDF

구강편평세포암종에서 미슬토 추출물의 Apoptosis 유도 효과에 대한 실험적 연구 (AN EXPERIMENTAL STUDY ON MISTLETOE EXTRACT-INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA)

  • 허균행;이재훈;김철환
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권1호
    • /
    • pp.13-23
    • /
    • 2005
  • This study was performed to investigate mistletoe extract-induced apoptosis in oral squamous cell carcinoma. In vivo study, HN22 cells were xenografted in nude mice. After tumor was experimentally induced, mistletoe extract was directly injected on the tumor mass. The specimens were evaluated using light and transmission electron microscopes. In vitro study, HN22 cells were cultured and exposed to mistletoe extract. The cells were evaluated using transmissin electron microscope. To evaluate apoptotic cells, flow cytometric analysis was done. The results were obtained as follows: 1. Light microscopic view of tumor mass showed necrosis at 2-4 weeks. 2. Transmission electron micrographs of tumor mass showed apoptosis and necrosis. 3. In TEM view of cell lines, necrosis and apoptosis were shown with mistletoe extract at $300{\mu}g/ml$, apoptosis was shown with mistletoe extract at $100{\mu}g/ml$. 4. In flow cytometric analysis, early and late apoptosis was shown when using caspase-3Ab and annexin-V, but no significant change was noted when using mebstain and Apo2.7 Ab. In this study, mistletoe extract induced necrosis and apoptosis in the tumor mass was induced by HN22 cells, early and late apoptosis in vitro study. Mistletoe extract was likely to induce cell death in oral squamous cell carcinoma through apoptosis.

COX-2 억제제에 의한 AKT 경로를 통한 구강편평세포암종 세포주의 세포사멸 유도 (COX-2 INHIBITOR INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH AKT PATHWAY)

  • 서영호;한세진;이재훈
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.30-40
    • /
    • 2008
  • The objectives of this study was to check up the effect of celecoxib, COX-2 inhibitor, on the pathogenesis of oral squamous cell carcinoma. After mefenamic acid, aspirin and celecoxib, COX-2 inhibitor, were inoculated to HN 22 cell line, the following results were obtained through tumor cell viability by wortmannin, growth curve of tumor cell line, apoptotic index, PGE2 synthesis, total RNA extraction, RT-PCR analysis and TEM features. 1. When wortmannin and celecoxib were given together, the survival rate of tumor cells was lowest about 47 %. So wortmannin had an effect on the decrease of survival rate of tumor cells. 2. In growth curve, the slowest growth was observed in celecoxib inoculated group. 3. The synthesis of PGE2 was decreased in all group and the obvious suppression and highest apoptotic index was observed in celecoxib inoculated group. 4. Suppression of expression of COX-2 mRNA was evident in celecoxib inoculated group. But that of COX-1,2 mRNA was observed in mefenamic acid inoculated group and aspirin inoculated group. 5. In celecoxib inoculated group, mRNA expression of AKT1 was decreased and that of PTEN & expression of caspase 3 and 9 was evidently increased. Depending on above results, when celecoxib was inoculated to oral squamous cell carcinoma cell line, an increase of mRNA expression of caspase 3,9 and PTEN is related to a decrease of mRNA expression of AKT1. Wortmannin had an effect on the decrease of survival rate of tumor cells. Celecoxib might induce apoptosis of tumor cell by suppression of AKT1 pathway and COX-2 inhibition. This results suggested that COX-2 inhibitor might be significantly effective in chemoprevention of oral squamous cell carcinoma.

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid

  • Kim, Jin Young;Cho, Kyung Hwa;Lee, Hoi Young
    • 치위생과학회지
    • /
    • 제18권3호
    • /
    • pp.188-193
    • /
    • 2018
  • The aim of the current study was to demonstrate the potential therapeutic efficacy of resveratrol in oral cancer patients. Lysophosphatidic acid (LPA) intensifies cancer cell invasion and metastasis, whereas resveratrol, a natural polyphenolic compound, possesses antitumor activity, suppressing cell proliferation and progression in various cancer cell lines (ovarian, gastric, oral, pancreatic, colon, and prostate cancer cells). In addition, resveratrol has been identified as an inhibitor of LPA-induced proteolytic enzyme expression and ovarian cancer invasion. Furthermore, resveratrol was shown to inhibit oral cancer cell invasion by downregulating hypoxia-inducible factor $1{\alpha}$ and vascular endothelial growth factor expression. Recently, we demonstrated that LPA is important for the expression of transcription factors TWIST and SLUG during epithelial-mesenchymal transition (EMT) in oral squamous carcinoma cells. In this study, we treated serum-starved cultures of oral squamous carcinoma cell line YD-10B with resveratrol for 24 hours prior to stimulation with LPA. To identify an optimal resveratrol concentration that does not induce apoptosis in oral squamous carcinoma cells, we determined the toxicity of resveratrol in YD-10B cells by assessing their viability using the MTT assay. Another assay was performed using Matrigel-coated cell culture inserts to detect oral cancer cell invasion activity. Immunoblotting was applied for analyzing protein expression of SLUG, TWIST1, E-cadherin, and GAPDH. We demonstrated that resveratrol efficiently inhibited LPA-induced oral cancer cell EMT and invasion by downregulating SLUG and TWIST1 expression. Therefore, resveratrol may potentially reduce oral squamous carcinoma cell invasion and metastasis in oral cancer patients, improving their survival outcomes. In summary, we identified new targets for the development of therapies against oral cancer progression and characterized the therapeutic potential of resveratrol for the treatment of oral cancer patients.

Cyclosporin A가 구강편평상피세포암 세포주에 미치는 항암효과 (ANTI-CANCER EFFECT OF CYCLOSPORIN A ON ORAL SQUAMOUS CELL CARCINOMA CELL LINE)

  • 임한욱;김경욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권6호
    • /
    • pp.474-481
    • /
    • 2004
  • Squamous cell carcinoma is the most prevalent oral cancer, which is characterized by its low survival rate, high malignancy, mortality with facial defects, and poor prognosis. Exact cause and pathogenesis of the squamous cell carcinoma is still unknown. Various routes including smoking, radiation, and viral infections predispose its genesis, and recent studies revealed that genetic defects which fail to prevent cancer proliferation play a role. Generally, a cancer develops from the decreased rate of apoptosis which is an active and voluntary cell death, and from the altered cell cycles. Anticancer effect can be obtained by recovering the apoptotic process, and by suppressing the cell cycles. Among the apoptosis related factors, bcl-2, caspase-9, and VDAC (voltage-dependent anion channel)are produced in mitochondria of the cell. Cyclosporin-A is known to induce apoptosis through its activation with VDAC. This study was to reveal the anticancer effect of Cyclosporin A to the oral squamous cell carcinoma. The inverted microscope was used to find alterations in the tissue, and sensitivity test to the anticancer cells was performed with MTT (Tetrazolium-based colorimetric) assay. Following cell line culture of primary and metastastic oral squamous cell carcinoma, electrophoresis was performed with extracted total RNA. Finally, semi-quantitative study was carried out through RT-PCR (Reverse Transcription-Polymerase Chain Reaction). The results of this study are as follows: 1. The inverted microscopic observation revealed a poorly defined cytoplasm at $2000ng{\sim}3000ng/ml$, indistinct nucleus, and apoptosis. 2. The Growth of cancer cells was decreased at 1000ng/ml of cyclosporin-A. No cancer cell growth was observed at over 2000ng/ml concentration of cyclosporin-A, and at one week, growth of cancer cells was ceased. 3. The MTT assays were decreased as cyclosporin-A concentration was increased. This means that the activation of succinyl dehydrogenase in mitochondria was decreased following administration of cyclosporin A. 4. A result of RT-PCR showed that amount of mRNA of VDAC-2 was decreased half times at a cyclosporine-A concentration of 2000ng/ml. In bcl-2, amount of mRNA was significantly decreased 1/5 times at 2000ng/ml. caspase-9, however, showed slight increase compared to the control group. From the results obtained in this study, administration of cyclosporin-A to the cell lines of oral squamous cell carcinoma induced alterations in morphology and growth of the cells as its concentration increased. Since apoptosis related factors such as VDAS-2, bcl-2, and caspase-9 also showed distinct alterations on their mRNAs, further research on cyclosporin A as an anti-cancer agent will be feasible.