Coffee (Coffea spp.) is one of the most important agricultural commodities, being widely consumed in the world. Various beneficial health effects of coffee have been extensively investigated, but data on habitual coffee consumption and its bio-physiological effect have not been clearly explained as well as it is not proved the cause and effect between drinking coffee and its bio-physiological reactions. We made the dialyzed coffee extract (DCE), which is absorbable through gastrointestinal tract, in order to elucidate the cellular effect of whole small coffee molecules. RAW 264.7 cells, a murine macrophage lineage, were directly treated with DCE, i.e., DCE-2.5 (equivalent to 2.5 cups of coffee a day), DCE-5, and DCE-10, for 12 hours, and their protein extracts were examined by immunoprecipitation high performance liquid chromatography (IP-HPLC). RAW 264.7 cells differently expressed the inflammation-related proteins depending on the doses of DCE. RAW 264.7 cells treated with DCE showed marked increase of cathepsin C, cathepsin G, CD20, CD28, CD31, CD68, indicating the activation of innate immunity. Particularly, the macrophage biomarkers, cathepsin G, cathepsin C, CD31, and CD68 were markedly increased after DCE-5 and DCE-10 treatments, and the lymphocyte biomarkers, CD20 and CD28 were consistently increased and became marked after DCE-10 treatment. On the other hand, RAW 264.7 cells treated with DCE showed consistent increase of IL-10, an anti-inflammatory factor, but gradual decreases of different pro-inflammatory proteins including $TNF{\alpha}$, COX-2, lysozyme, MMP-2, and MMP-3. In particular, the cellular signaling of inflammation was gradually mitigated by the reduction of $TNF{\alpha}$, COX-2, IL-12, and M-CSF, and also the matrix inflammatory reaction was reduced by marked deceases of MMP-2, MMP-3, and lysozyme. These anti-inflammatory expressions were consistently found until DCE-10 treatment. Therefore, it is presumed that DCE may have dynamic effects of innate immunity activation and pro-inflammation suppression on RAW264.7 cells simultaneously. These effects were consistently found in the highest dose of coffee, DCE-10 (equivalent to 10 cups of coffee a day in man), that might imply the small coffee molecules were accumulated in RAW 264.7 cells after DCE-10 treatment and produce synergistic cytokine effects for innate immunity activation and anti-inflammatory reaction concurrently.