• Title/Summary/Keyword: oral biofilm

Search Result 121, Processing Time 0.022 seconds

Decontamination methods to restore the biocompatibility of contaminated titanium surfaces

  • Jin, Seong-Ho;Lee, Eun-Mi;Park, Jun-Beom;Kim, Kack-Kyun;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.193-204
    • /
    • 2019
  • Purpose: The reaction of cells to a titanium implant depends on the surface characteristics of the implant which are affected by decontamination. The aim of this study was to evaluate the cytocompatibility of titanium disks treated with various decontamination methods, using salivary bacterial contamination with dental pellicle formation as an in vitro model. Methods: Sand-blasted and acid-etched (SA) titanium disks were used. Three control groups (pristine SA disks [SA group]; salivary pellicle-coated SA disks [pellicle group]; and biofilm-coated, untreated SA disks [NT group]) were not subjected to any decontamination treatments. Decontamination of the biofilm-coated disks was performed by 14 methods, including ultrasonic instruments, rotating instruments, an air-powder abrasive system, a laser, and chemical agents. MG63 cells were cultured in the presence of the treated disks. Cell proliferation assays were performed on days 2 and 5 of cell culture, and cell morphology was analyzed by immunofluorescence and scanning electron microscopy (SEM). A vascular endothelial growth factor (VEGF) assay was performed on day 5 of culture. Results: The cell proliferation assay revealed that all decontaminated disks, except for the 2 groups treated using a plastic tip, showed significantly less cell proliferation than the SA group. The immunofluorescence and SEM analyses revealed that most groups showed comparable cell density, with the exception of the NT group, in which the cell density was lower and bacterial residue was observed. Furthermore, the cells grown with tetracycline-treated titanium disks showed significantly lower VEGF production than those in the SA group. Conclusions: None of the decontamination methods resulted in cytocompatibility similar to that of pristine SA titanium. However, many methods caused improvement in the biocompatibility of the titanium disks in comparison with the biofilm-coated, untreated titanium disks. This suggests that decontamination is indispensable for the treatment of peri-implantitis, even if the original biocompatibility cannot be restored.

Evaluation of Ciclopirox as a Virulence-modifying Agent Against Multidrug Resistant Pseudomonas aeruginosa Clinical Isolates from Egypt

  • Zakaria, Azza S.;Edward, Eva A.;Mohamed, Nelly M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.651-661
    • /
    • 2019
  • Targeting the pathogen viability using drugs is associated with development of drug resistance due to selective pressure. Hence, there is an increased interest in developing agents that target bacterial virulence. In this study, the inhibitory effect of ciclopirox, an antifungal agent with iron chelation potential, on the microbial virulence factors was evaluated in 26 clinical MDR Pseudomonas aeruginosa isolates collected from Alexandria Main University Hospital, a tertiary hospital in Egypt. Treatment with 9 ㎍/ml ciclopirox inhibited the hemolytic activity in 70% isolates, reduced pyocyanin production, decreased protease secretion in 46% isolates, lowered twitching and swarming motility, and decreased biofilm formation by 1.5- to 4.5-fold. The quantitative real-time PCR analysis revealed that treatment with ciclopirox downregulated the expression levels of alkaline protease (aprA) and pyocyanin (phzA1). Ciclopirox is used to treat hematological malignancies and the systemic administration of ciclopirox is reported to have adequate oral absorption with a satisfactory drug safety profile. It is important to calculate the appropriate clinical dose and therapeutic index to reposition ciclopirox from a topical antifungal agent to a promising virulence-modifying agent agent against P. aeruginosa, a problematic Gram-negative pathogen.

The Effects of Sodium Chloride on the Physiological Characteristics of Listeria monocytogenes

  • Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.395-402
    • /
    • 2013
  • Sodium chloride is used to improve various properties of processed meat products, e.g., taste, preservation, water binding capacity, texture, meat batter viscosity, safety, and flavor; however, many studies have shown that sodium chloride increases the resistance of many foodborne pathogens to heat and acid. Listeria monocytogenes has been isolated from various readyto- eat (RTE) meat and dairy products formulated with sodium chloride; therefore, the objective of this paper was to review the effects of sodium chloride on the physiological characteristics of L. monocytogenes. The exposure of L. monocytogenes to sodium chloride may increase biofilm formation on foods or food contact surfaces, virulence gene transcription, invasion of Caco-2 cells, and bacteriocin production, depending on L. monocytogenes strain and serotype as well as sodium chloride concentration. When L. monocytogenes cells were exposed to sodium chloride, their resistance to UV-C irradiation and freezing temperatures increased, but sodium chloride had no effect on their resistance to gamma irradiation. The morphological properties of L. monocytogenes, especially cell elongation and filament formation, also change in response to sodium chloride. These findings indicate that sodium chloride affects various physiological responses of L. monocytogenes and thus, the effect of sodium chloride on L. monocytogenes in RTE meat and dairy products needs to be considered with respect to food safety. Moreover, further studies of microbial risk assessment should be conducted to suggest an appropriate sodium chloride concentration in animal origin foods.

Antimicrobial effect of topical local anesthetic spray on oral microflora

  • Srisatjaluk, Ratchapin L;Klongnoi, Boworn;Wongsirichat, Natthamet
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • Background: To evaluate the antimicrobial activity of lidocaine (LD) topical anesthetic spray against oral microflora. Methods: Antimicrobial effects of 10% LD spray were assessed against six bacterial cultures obtained from volunteers: Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus salivarius, Streptococcus pyogenes, and Streptococcus sanguinis. The filter papers contained $50-{\mu}l$ LD, brain heart infusion (BHI) broth, or 0.2% chlorhexidine. Papers were placed on the cultured blood plates for 1-3 min. After the papers were removed, plates were incubated for 24 h. Bacterial growth on the contact areas was recorded as the antimicrobial score. The split mouth technique was use in for sample collection in clinical study. Filter papers soaked with either BHI broth or LD were placed on the right or left buccal mucosa for 1 min, and replaced with other papers to imprint biofilms onto the contact areas. Papers were placed on blood plates, incubated for 24 h, and antimicrobial scores were determined. Experiments were conducted for 2- and 3-min exposure times with a 1-day washout period. Results: LD exhibited bactericidal effects against E. coli, S. sanguinis, and S. salivarius within 1 min but displayed no effect against S. aureus, E. faecalis, and S. pyogenes. The antimicrobial effect of LD on oral microflora depended upon exposure time, similar to the results obtained from the clinical study (P < 0.05). LD showed 60-95% biofilm reduction on buccal mucosa. Conclusions: Antimicrobial activity of 10% LD topical anesthetic spray was increased by exposure time. The 3 min application reduced oral microflora in the buccal mucosa.

Antibacterial and Antibiofilm Activities of Alnus japonica Stem Extract against Porphyromonas gingivalis (Porphyromonas gingivalis에 대한 오리나무 줄기 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1386-1392
    • /
    • 2019
  • This study investigated the potential of dye plants as natural oral health products. The antibacterial activity of ethanol stem extracts of A. japonica, R. verniciflua Stokes, G. jasminoides, D. morbifera, P. amurense Rupr., and S. japonica against P. gingivalis KCTC 5352, S. mutans KCTC3065, S. downei KCTC3634, S. sanguinis KCTC3284, and S. gordonii KCTC 3286 was confirmed. Among the stem extracts from 6 dye plants grown in Korea, ethanol extract from A. japonica stem (1 mg/disc) showed the highest antibacterial activity against P. gingivalis KCTC5352. The A. japonica stem extracts showed antibacterial activity similar to chlorhexidine, which was used as a positive control. The MIC and MBC of P. gingivalis KCTC5352 were 0.4 mg/ml and 0.6 mg/ml, respectively. The biofilm production rate and cell growth of P. gingivalis KCTC5352 in the cultures treated with 0.2-2.0 mg/ml of A. japonica extract were significantly decreased in a concentration-dependent manner. In addition, the mRNA expression of the superoxide dismutase and fimA associated with fimbriae formation in these cultures was suppressed, also in a concentration-dependent manner. Based on these results, it is concluded that A. japonica stem extracts can be used as an oral health product derived from natural materials, as demonstrated by its antibacterial action against and inhibition of biofilm formation of P. gingivalis KCTC5352.

The Effect of Toll-like Receptor 2 Activation on the Non-opsonic Phagocytosis of Oral Bacteria and Concomitant Production of Reactive Oxygen Species by Human Neutrophils

  • Kim, Kap Youl;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-$Lef{\grave{e}}vre$ syndrome, and $Ch{\grave{e}}diak$-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of $Pam_3CSK_4$, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. $Pam_3CSK_4$ significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. $Pam_3CSK_4$ alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and $Pam_3CSK_4$ decreased the amounts of ROS, as compared to $Pam_3CSK_4$ alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of $Pam_3CSK_4$. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis, an early colonizer, in subgingival biofilm.

Anticariogenic Properties of the Extract of Saururus chinensis (삼백초 추출물의 항치아우식 효과)

  • Lee, Da-Hong;Yu, Hyeon-Hee;Jung, Su-Young;Moon, Hae-Dalma;Park, Ki-Bong;Cho, Soo-Min;Jeon, Byung-Hun;Kim, In-Sook;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.647-651
    • /
    • 2007
  • It has been well established that S. mutans is the major etiological agent in dental caries, one of the most common oral diseases worldwide. The present study was designed to investigate the effect of Saururus chinensis (S. chinensis) ethanol extracts on the growth, acid production, biofilm formation, adhesion, and insoluble glucan synthesis of S. mutans. The ethanol extracts of S. chinensis showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.025, 0.05, 0.1, 0.2 and 0.4 mg/ml compared to the control group. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 80% at the concentration of 0.05 mg/ml and complete inhibition was observed at the concentration of 0.4 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan form sucrose, ethanol extract of S. chinensis showed more than 10% inhibition over the concentration of 0.025 mg/ml. The synthesis of insoluble glucan was decreased in the presence of 0.025 ${\sim}$ 0.4 mg/ml of the ethanol extract of S. chinensis. Our research strongly suggested S. chinensis was a promising natural product for the prevention of dental caries.

Comparison of Cariogenic Characteristics between Fluoride-sensitive and Fluoride-resistant Streptococcus mutans (불소 민감성 Streptococcus mutans와 불소 저항성Streptococcus mutans의 우식원성 특성 비교)

  • Ong, Seung-Hwan;Kim, Jongsoo;Baek, Dong-Heon;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.4
    • /
    • pp.397-405
    • /
    • 2020
  • The aim of this study is to compare cariogenic characteristics of fluoride-sensitive Streptococcus mutans [fluoride-sensitive (FS) S. mutans ] and fluoride-resistant Streptococcus mutans [fluoride-resistant (FR) S. mutans] in the presence of sucrose, and to evaluate its effect on cariogenic biofilm formation. S. mutans ATCC 25175 was continuously cultured in trypticase soy broth (TSB) containing NaF (70 ppm) for 40 days to generate FR S. mutans. FS and FR S. mutans were inoculated in TSB with or without 2% sucrose, and optical density and pH were measured every hour. An oral biofilm was formed using saliva bacteria and analyzed through confocal laser scanning microscopy and CFU count. Finally, the expression of glucosyltransferases genes of both S. mutans was investigated through RT-PCR. FR S. mutans exhibited slower growth and lower acidogenicity in the presence of sucrose compared to FS S. mutans . Both cariogenic and single species biofilm formation was lower in the presence of FR S. mutans, along with reduced number of bacteria. FR S. mutans showed significantly low levels of gtfB, gtfC, and gtfD expression compared to FS S. mutans . On the basis of results, FR S. mutans may be less virulent in the induction of dental caries.

Antifungal effects of synthetic human β-defensin 3-C15 peptide

  • Lim, Sang-Min;Ahn, Ki-Bum;Kim, Christine;Kum, Jong-Won;Perinpanayagam, Hiran;Gu, Yu;Yoo, Yeon-Jee;Chang, Seok Woo;Han, Seung Hyun;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Zhu, Qiang;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objectives: The purpose of this ex vivo study was to compare the antifungal activity of a synthetic peptide consisting of 15 amino acids at the C-terminus of human ${\beta}$-defensin 3 (HBD3-C15) with calcium hydroxide (CH) and Nystatin (Nys) against Candida albicans (C. albicans) biofilm. Materials and Methods: C. albicans were grown on cover glass bottom dishes or human dentin disks for 48 hr, and then treated with HBD3-C15 (0, 12.5, 25, 50, 100, 150, 200, and $300{\mu}g/mL$), CH ($100{\mu}g/mL$), and Nys ($20{\mu}g/mL$) for 7 days at $37^{\circ}C$. On cover glass, live and dead cells in the biomass were measured by the FilmTracer Biofilm viability assay, and observed by confocal laser scanning microscopy (CLSM). On dentin, normal, diminished and ruptured cells were observed by field-emission scanning electron microscopy (FE-SEM). The results were subjected to a two-tailed t-test, a one way analysis variance and a post hoc test at a significance level of p = 0.05. Results: C. albicans survival on dentin was inhibited by HBD3-C15 in a dose-dependent manner. There were fewer aggregations of C. albicans in the groups of Nys and HBD3-C15 (${\geq}100{\mu}g/mL$). CLSM showed C. albicans survival was reduced by HBD3-C15 in a dose dependent manner. Nys and HBD3-C15 (${\geq}100{\mu}g/mL$) showed significant fungicidal activity compared to CH group (p < 0.05). Conclusions: Synthetic HBD3-C15 peptide (${\geq}100{\mu}g/mL$) and Nys exhibited significantly higher antifungal activity than CH against C. albicans by inhibiting cell survival and biofilm.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.