• Title/Summary/Keyword: optoelectronic materials

Search Result 281, Processing Time 0.031 seconds

Detection of Explosive RDX using Parallel Plate Waveguide THz-TDS (평행판 도파관 THz 분광을 이용한 폭발물 RDX 검출)

  • Yoo, Byung Hwa;Chung, Dong Chul;Kang, Seung Beom;Kwak, Min Hwan;Kang, Gwang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1939-1943
    • /
    • 2012
  • In this paper we presented the detection of the explosive material RDX using a parallel plate waveguide (PPWG) THz time domain spectroscopy (TDS). Normally the explosive materials have been characterized through identification of vibrational fingerprint spectra. Until now, most of all THz spectroscopic measurements have been made using pellet samples where disorder effects contribute to line broadening such that individual resonances merge into relatively broad absorption features. In order to avoid such disadvantages we used the technique of PPWG THz-TDS to achieve sensitive characterization of explosive material RDX. The PPWG THz-TDS used in this work well established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. The explosive material was analyzed as powder layers in $112{\mu}m$ gap of metal PPWG. The thin later mass was estimated to be about $700{\mu}g$. Finally, we showed spectra of explosives from 0.2 to 2.4 THz measured using PPWG THz-TDS.

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF

Photoresponsive Characteristics of N-channel Pseudomorphic HEMT and MESFET Under Optical Stimulation for Possible Applications to Millimeter-Wave Photonics

  • 김동명;김희종;이정일;이유종
    • Electrical & Electronic Materials
    • /
    • v.12 no.8
    • /
    • pp.39-45
    • /
    • 1999
  • Comparative photoresponsive current-volt-age characteristics of n-channel PHEMT and MESFET on GaAs substrate. with (W/L)=200${\mu}{\textrm}{m}$/1${\mu}{\textrm}{m}$ of gates, are reported as a function of electro-optical stimulation (P\ulcorner, λ=830nm) for the first time as far as we know. Significantly different photoresponses are observed in MESFET and PHEMT, mainly due to different optoelectronic mechanisms in the formation and current conduction of channel carriers. Under high optical power, high photoresponsity with a strong non-linearity with P\ulcorner, predominantly due to a parallel conduction via a heavily doped Al\ulcornerGa\ulcornerAs donor layer, was observed in PHEMT while the optically induced drain current has been very small but monotonically increasing with optical stimulation in GaAs MESFET. We also investigated differences in optically stimulated gate leakage currents and photonic gate responses on gate voltage and drain voltage as a function of P\ulcorner. Based on the drain and gate responses to electro-optical stimulation. PHEMTs are expected to be a better candidate for high performance photonically responsive microwave device compared with MESFETs.

  • PDF

PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk;Cho, Hyun-Nam;Kim, Seong-Hun;Kim, Jun-Young
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

A Fabrication and Characterization of Organic Thin Film Transistor Using Conjugated Oligomers (공액성 소중합체를 이용한 유기 박막 트랜지스터 제작 및 특성에 관한 연구)

  • Kim, Ok-Byoung;Kim, Duck-Young;Kim, Young-Kwan;Sohn, Byoung-Chung;Kim, Jung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.313-316
    • /
    • 1999
  • Organic semiconductors based on conjugated thiophene oligomer have great potential to be utilized as an active layer for electronic and optoelectronic devices. In this study, a conjugated oligomer such as ${\alpha}$-sexithiophene (${\alpha}$-6T) thin films was prepared by the Organic Molecular Beam Deposition (OMBD), and various electrode materials were also deposited by a simple vacuum evaporation, respectively. Those films were photolithographically patterned for the electrical measurements. Electrical charact-erization of the thin film transistor with various channel length were executed and the field effect mobility of these thin film transistors were also calculated by the formula using the experimental data.

Metaheuristic-reinforced neural network for predicting the compressive strength of concrete

  • Hu, Pan;Moradi, Zohre;Ali, H. Elhosiny;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.195-207
    • /
    • 2022
  • Computational drawbacks associated with regular predictive models have motivated engineers to use hybrid techniques in dealing with complex engineering tasks like simulating the compressive strength of concrete (CSC). This study evaluates the efficiency of tree potential metaheuristic schemes, namely shuffled complex evolution (SCE), multi-verse optimizer (MVO), and beetle antennae search (BAS) for optimizing the performance of a multi-layer perceptron (MLP) system. The models are fed by the information of 1030 concrete specimens (where the amount of cement, blast furnace slag (BFS), fly ash (FA1), water, superplasticizer (SP), coarse aggregate (CA), and fine aggregate (FA2) are taken as independent factors). The results of the ensembles are compared to unreinforced MLP to examine improvements resulted from the incorporation of the SCE, MVO, and BAS. It was shown that these algorithms can considerably enhance the training and prediction accuracy of the MLP. Overall, the proposed models are capable of presenting an early, inexpensive, and reliable prediction of the CSC. Due to the higher accuracy of the BAS-based model, a predictive formula is extracted from this algorithm.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • Lee, Gyeong-Dong;Park, Myeong-Jin;Kim, Do-Yeon;Kim, Su-Min;Gang, Byeong-Jun;Kim, Seong-Tak;Kim, Hyeon-Ho;Lee, Hae-Seok;Gang, Yun-Muk;Yun, Seok-Gu;Hong, Byeong-Hui;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer (Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성)

  • Ko, Younghee;Park, Gwanghoon;Ko, Hang-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

Amorphous Indium-Tin-Zinc-Oxide (ITZO) Thin Film Transistors

  • Jo, Gwang-Min;Lee, Gi-Chang;Seong, Sang-Yun;Kim, Se-Yun;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.170-170
    • /
    • 2010
  • Thin-film transistors (TFT) have become the key components of electronic and optoelectronic devices. Most conventional thin-film field-effect transistors in display applications use an amorphous or polycrystal Si:H layer as the channel. This silicon layers are opaque in the visible range and severely restrict the amount of light detected by the observer due to its bandgap energy smaller than the visible light. Therefore, Si:H TFT devices reduce the efficiency of light transmittance and brightness. One method to increase the efficiency is to use the transparent oxides for the channel, electrode, and gate insulator. The development of transparent oxides for the components of thin-film field-effect transistors and the room-temperature fabrication with low voltage operations of the devices can offer the flexibility in designing the devices and contribute to the progress of next generation display technologies based on transparent displays and flexible displays. In this thesis, I report on the dc performance of transparent thin-film transistors using amorphous indium tin zinc oxides for an active layer. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium tin zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium tin zinc oxides was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 4.17V and an on/off ration of ${\sim}10^9$ operated as an n-type enhancement mode with saturation mobility with $15.8\;cm^2/Vs$. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium tin zinc oxides for an active layer were reported. The devices were fabricated at room temperature by RF magnetron sputtering. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF