• Title/Summary/Keyword: optimum pitch

Search Result 167, Processing Time 0.021 seconds

A Design of an Automotive Wheel Bearing Unit for Long Life (자동차 휠 베어링 유닛의 장수명 설계)

  • Yun, Gi-Chan;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

A numerical study for optimizing the thermal and flow performance in the channel of plate heat exchanger with dimples (딤플이 있는 판형 열교환기 관내측 열유동 최적화)

  • 이관수;시종민;정길완
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.700-708
    • /
    • 1999
  • The optimum dimple shape and arrangement in the channel of a plate heat exchanger with staggered dimples are proposed in this study. Four important geometric parameters are selected as design variables, the pressure drop and heat transfer characteristics are examined in the channel of plate heat exchangers. The optimization is accomplished by minimizing the global criterion function which consists of the correlations of Nusselt number and pressure drop. The optimum geometric parameters were found at the dimensionless dimple distance (L) of 0.272, the dimensionless dimple angle ($\beta$) of 0.44, the dimensionless dimple volume (V) of 0.106 and the dimensionless dimple pitch (G) of 0.195. It is found that the heat transfer and pressure drop of the optimum model are increased by approximately 227.9% and 32.9%, respectively, compared to those of the base model.

  • PDF

Schlieren Visualization of the 2-D Supersonic Thrust Vector Nozzle (2차원 초음속 추력편향노즐 쉴리렌 가시화)

  • Jeong, Han-Jin;Yu, Du-Whan;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.575-578
    • /
    • 2011
  • The thrust vectoring concept has been used for use in new advanced supersonic aircraft. This study presents the performance characteristics of the thrust vectoring nozzle by visualizing the shock behaviors with Schlieren method. We performed experimental tests to see the geometrical effects of the thrust vector nozzle by changing pitch angle and length of pitch flaps. From this study we could understand the supersonic flow characteristics of the thrust vector nozzle. The total thrust of thrust vector nozzle is diminished by increasing the flap angle. But there is an optimum flap length ratio for attaining the highest thrust level and proper pitch effect.

  • PDF

Optimization of ride comfort for a three-axle vehicle equipped with interconnected hydro-pneumatic suspension system

  • Saglam, Ferhat;Unlusoy, Y. Samim
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • The aim of this study is the optimization of the parameters of interconnected Hydro-Pneumatic (HP) suspension system of a three-axle vehicle for ride comfort and handling. For HP suspension systems of equivalent vertical stiffness and damping characteristics, interconnected HP suspension systems increase roll and pitch stiffness and damping characteristics of the vehicle as compared to unconnected HP suspension systems. Thus, they result in improved handling and braking/acceleration performances of the vehicle. However, increased roll and pitch stiffness and damping characteristics also increase roll and pitch accelerations, which in turn result in degraded ride comfort performance. Therefore, in order to improve both ride comfort and vehicle handling performances simultaneously, an optimum parameter set of an interconnected HP suspension system is obtained through an optimization procedure. The objective function is formed as the sum of the weighted vertical accelerations according to ISO 2631. The roll angle, one of the important measures of vehicle handling and driving safety, is imposed as a constraint in the optimization study. Upper and lower parameter bounds are used in the optimization in order to get a physically realizable parameter set. Optimization procedure is implemented for a three-axle vehicle with unconnected and interconnected suspension systems separately. Optimization results show that interconnected HP suspension system results in improvements in both ride comfort and vehicle handling performance, as compared to the unconnected suspension system. As a result, interconnected HP suspension systems present a solution to the conflict between ride comfort and vehicle handling which is present in unconnected suspension systems.

Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch (콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성)

  • Kim, Joon-Woo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

Separatipon of Oryzanol from the Refining By-Product of Rice Bran Oil (미강유 정제 부산물로부터 오리자놀 분리)

  • Kim, In-Hwan;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.76-80
    • /
    • 1991
  • To isolate oryzanol from the by-product of rice bran oil refinning, experiment of solvent fractional crystallization was carried out at various conditions with the dark oil obtained by acidifying the soap stock of micella refinning process and the pitch obtained from vacuum distillation of the dark oil. The impurity interfering the crystallization process such as waxes can be removed as precipitates by cooling the 1:1 mixtrue of acetone and dark oil to $0^{\circ}C$, From the dewaxed dark oil, oryzanol concentrate with 51.3% purity was obtained by fractional crystallization at$0^{\circ}C$ with the mixture of 8 part volume of hexane and 1 part of the dewaxed dark oil. The concentrate was recrystallized at room temperature with 20 part volume of methanol to yield oryzanol crystal of 98.3% purity. The optimum condition of vacuum distillation was temperature of $180^{\circ}C\;at\;0.2{\sim}0.4\;torr$ with 2% steam sparging. At this condition, the free fatty acid in the dark oil was removed as distillate without thermal deomposition to yield 82.3% of oryzanol as the pitch of 27.3% purity. After concentration from the pitch with 20 part volume of hexane to yield yellow powder of 75.4% purity, the yellow powder was recrystallized in methanol at room temperature to obtain the crystal containing 99.0% oryzanol. The overall oryzanol yield from the dark oil and the pitch was 9.5 and 28.5%, respectively. The change of the composition of sterols and triterpenoid alcohols in the compounds isolated during fractionation was analyzed by GC-MS.

  • PDF

Characterization of Fluxing and Hybrid Underfills with Micro-encapsulated Catalyst for Long Pot Life

  • Eom, Yong-Sung;Son, Ji-Hye;Jang, Keon-Soo;Lee, Hak-Sun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.343-351
    • /
    • 2014
  • For the fine-pitch application of flip-chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro-encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro-encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine-pitch flip-chip bonding processes and be highly reliable.

Fabrication of the Micro-structured DVD-RAM Substrates (미세 형상을 갖는 DVD-RAM 기판의 성형에 관한 연구)

  • 문수동
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.167-170
    • /
    • 2000
  • Recently the sub-micron structured substrates of 0.74 ${mu}ell$ track pitch and 800 $\AA$groove depth are required for DVD-RAM and the track pitch is expected to be narrower as the need for the information storage density is getting higher. For the accurate replication of the land-groove structure in the stamper to the plastic substrates it is important to control the injection -compression molding process such that the integrity of the replication for the land-groove structure is maximized. in the present study polycarbonate substrates were fabricated by injection comression molding and the land-groove structure regarded as one of mold temperature and the compression pressure on the integrity of the replication were examined experimentally. An efficient design methodology using the response surface method (RSM) the central composite design(CCD) technique and the analysis-of-variance (ANOVA) was developed to obtain the optimum processing conditions which maximize the integrity of the replication with a limited number of experiments.

  • PDF

Influence of Working Conditions on the Spinnability of Cylindrical Cups of Aluminum Sheet Metal (알루미늄 원통컵의 스피닝 성형성에 영향미치는 작업조건 연구)

  • 김종호;박규호;나경환;김승수
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.465-470
    • /
    • 1999
  • Many researchers have, nowadays, studied on spinning which can produce highly qualified products by CNC spinning machine equipped with hydraulic devices. The products have continuous metal flow which improves fatigue life, yield point, tensile strength and hardness. This study is to investigate the influence of various working conditions on the spinnability of cylindrical cups such as feed rate(ν), feed pitch(p), angle of roller holder(α), and the inclination angle of first roller path. Through experiments the feed rate of (0.4∼0.7) mm/rev was shown to give the drawing ratio of 2.5 when the angle of roller holder was 5°, However, by increasing the angle of roller holder from 5°to 20°, the range of feed rate which can produce deeper cups became wider and the spinnability was also improved. The optimum working conditions, for the maximum formability of aluminum sheet metal as well as dimensional accuracy of spun cups, are presented and discussed.

  • PDF