• Title/Summary/Keyword: optimum mixture

Search Result 866, Processing Time 0.028 seconds

Optimum Compaction Test of Roller Compacted Concrete Pavement (롤러전압 콘크리트포장의 적정 다짐실험 방안 고찰)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • PURPOSES : To ensure appropriate RCC properties with sufficient strength development and workability, it is necessary to secure a proper level of consistency. It is also necessary to secure maximum dry density, which is an important factor for increasing the interaction of aggregate interlocking, leading to an augmentation of RCC strength. On the other hand, the dry density of RCC can be changed owing to the compaction conditions, water content, and particle size distribution. A Proctor test and a modified Proctor test were used for determining the optimum water content needed to achieve maximum dry density with different amounts of compaction energy. A Vebe test, on the other hand, was used for checking the level of consistency, which is important for producing a workable mixture. METHODS : To confirm the degree of compaction at various particle sizes, RCC mixtures with different sand/aggregate ratios were evaluated. The Proctor test and modified Proctor test were applied to these mixtures to check the effect of the aggregate gradation and compaction energy on the maximum dry density and optimum water content. During each test, three specimens were produced for all types of water content under each aggregate gradation. A compaction curve and the optimum water content and maximum dry density for each aggregate gradation were then obtained for both tests. The range of water content for the appropriate consistency of each aggregate gradation was determined through a Vebe test. The optimum water content was then evaluated based on this range. RESULTS : The compaction test results show that the modified Proctor test provides a higher maximum dry density and lower optimum water content compared with the standard Proctor test. For the modified Proctor test, two cases of aggregate gradation (s/a = 30% and 70%) had the optimum water contents outside of the appropriate water content range. For the standard Proctor test, on the other hand, none of aggregate gradations provided the optimum water content within the desired range. CONCLUSIONS : The modified Proctor test should be used for an RCC mixture design because it can provide adequacy between maximum dry density and consistency. Moreover, the compaction roller has become highly developed for higher compaction energy.

A Study on the Combustion Characteristic of the Methanol Fuel in a Turbulence Mixture (유동분위기에서 메탄올의 연소특성에 관한 연구)

  • 이중순;이태원;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2022-2029
    • /
    • 1995
  • The experiment was performed by using the condenser discharge ignition device in a constant volume combustion chamber for high pressure, equivalent to the TDC of spark ignition engine, which makes the forced turbulent field possible. The conclusions obtained under various initial pressures, initial temperatures, and turbulent conditions of the methanol-air mixture are as follows : As initial pressure, initial temperature of the mixture, and the ignition energy increase, the inflammability limit expands, but the lean inflammability limit decreases as turbulence intensity increases. Combustion duration is shorter in the case of the lower initial pressure, the higher initial temperature, an equivalence ratio of 1.1-1.2, and even though turbulence intensity increases up to optimum value. Maximum combustion pressure increases in turbulent ambience under the same mixture condition, only in the case each optimum turbulence intensity exists under every condition. As the turbulence intensity increases .tau.$_{10}$ proportion increases while the .tau.$_{pr}$ proportion decreases....

Development of Optimal Binder for Recycling Cold Asphalt Mixture (재활용 상온아스콘 혼합물의 최적 결합재 개발)

  • Hong, In Kwon;Jeon, Gil Song;Yang, Chang Bae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.409-413
    • /
    • 2014
  • This study was carried out to design the optimum mixing ratio of aggregate, cyclic aggregate, and binder (moisture, emulsified asphalt, and emulsion type additives) and produce recycling cold asphalt paving mixture satisfying site work standard. The cyclic aggregate satisfying KS F 2572 was collected from waste asphalt by adequate processing. As the moisture content increased, the shearing strength was decreased. The maximum marshall stability was shown at the 3.0 wt% moisture content. So the optimum moisture content was 3.0 wt%. The marshall stability and flow value with the amount of emulsified asphalt was satisfied in the range of 0.5~2.5 wt%, and the porosity was satisfied in the range of 0.7~2.5 wt%. So the optimum amount of emulsified asphalt was 1.6 wt%. The optimum amount of emulsion type additive was 0.1 wt% in the light of marshall stability and degree of saturation of recycling cold asphalt mixture.

Strength properties of lime-clay mixtures (석회 혼입 점토의 강도 특성)

  • Yur, Jae Ho;Kwon, Moo Nam;Goo, Jung Min;Kim, Hyun Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.61-69
    • /
    • 2000
  • This study was conducted to investigate most effective the optimum lime content for lime-clay modification. To achieve the aim, characteristics of compaction and compressive strength were tested by adding of 0, 5, 10, 15 and 20% lime (Hydrated lime) of dry weight of the clay. Distilled water was added 10, 15, 20 and 25% of dry weight of lime-clay mixture. In this test, the compressive strength of the specimens was measured according to the following curing period : 7, 21, 28, 35 and 49 days. The results are as follows. (1) As lime additive increased, the optimum moisture content of lime-clay mixture was increased and the maximum dry density was decreased. (2) The soil mixture of 20% of the moisture content and 10% of lime additive was shown the maximum compressive strength. (3) As curing period longer, the compressive strength was increased but after 21 curing days, the increasing rate of compressive strength was low as compared with earlier its value. (4) In the range of 20% of the moisture content, compressive strength of mixture of 10% lime additive increased twice compared with that of mixture of 0% lime additive. (5) All of the lime-clay are possible to use for an sub-base material and 20% of moisture content of lime-clay mixture is possible to use for a base material.

  • PDF

Evaluation of Optimum Contents of Hydrated-Lime and Anti-Freezing Agent for Low-Noise Porous Asphalt Mixture considering Moisture Resistance (수분민감성 관련 소석회 및 박리방지제 첨가 투수성 가열 아스팔트 혼합물의 최적 함량 평가)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.123-130
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the moisture resistance of the freeze-thaw process occurring in low-noise porous pavement using either hydrated-lime or anti-freezing agent. Various additives were applied to low-noise porous asphalt, which is actively paved in South Korea, to overcome its disadvantages. Moreover, the optimum contents of hydrated-lime and anti-freezing agent and behavior properties of low-noise porous asphalt layer are determined using dynamic moduli via the freeze-thaw test. METHODS : The low-noise porous asphalt mixtures were made using gyratory compacters to investigate its properties with either hydrated-lime or anti-freezing agent. To determine the dynamic moduli of each mixture, impact resonance test was conducted. The applied standard for the freeze-thaw test of asphalt mixture is ASTM D 6857. The freeze-thaw and impact resonance tests were performed twice at each stage. The behavior properties were defined using finite element method, which was performed using the dynamic modulus data obtained from the freeze-thaw test and resonance frequencies obtained from non-destructive impact test. RESULTS : The results show that the coherence and strength of the low-noise porous asphalt mixture decreased continuously with the increase in the temperature of the mixture. The dynamic modulus of the normal low-noise porous asphalt mixture dramatically decreased after one cycle of freezing and thawing stages, which is more than that of other mixtures containing additives. The damage rate was higher when the freeze-thaw test was repeated. CONCLUSIONS : From the root mean squared error (RMSE) and mean percentage error (MPE) analyses, the addition rates of 1.5% hydrated-lime and 0.5% anti-freezing agent resulted in the strongest mixture having the highest moisture resistance compared to other specimens with each additive in 1 cycle freeze-thaw test. Moreover, the freeze-thaw resistance significantly improved when a hydrated-lime content of 0.5% was applied for the two cycles of the freeze-thaw test. Hence, the optimum contents of both hydrated-lime and anti-freezing agent are 0.5%.

Mix Design for Waste PE Films Modified Asphalt Concrete (농업용 폐비닐로 개질한 아스팔트 콘크리트의 배합설계)

  • 김광우;이상범;오성균;고동혁;정승호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.313-318
    • /
    • 1999
  • This study is basic research to improve quality of asphalt concrete mixture, to preserve environment, and to recycle waste vinly. The mixing method and proper content of waste vinyl were determined through preliminary mix design. This study performed mix designs using 2 type gradations of aggregate in addtion content of wate vinly. Marshall stability at optimum asphalt content of asphalt concrete mixture addtin wate vinly was satisfied with the specification of the Ministry of Construction and Transportation , and its values indicated that dense grade asphalt concrete mixture containing waste vinyl were higher than common dense grade mixture (control). From this study, it was confirmed that addtion of waste vinyl improved quality of asphalt concrete mixture.

  • PDF

The Evaluation of Optimum Hardening Agent Mixture Ratio for Surface Stabilization on Extremely Soft Marine Clay (초연약해성점성토 지반의 표층안정처리를 위한 최적고화재 배합비 산정에 관한 연구)

  • 천병식;한기열
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.408-415
    • /
    • 2001
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. The aim of this study if to determine optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent consists of fly ash, gypsum, slag and cement for the ettringite hydrates and if effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient and marine clay in Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get optimal mixture ratio for 16-stabilizer materials of 6 types, and mixture ratio of stabilizer ingredient and marine clay was determined.

  • PDF

The Effects of Culture Conditions on the Diacetyl Production by Lactic Acid Bacteria (배양 조건에 따른 유산균의 Diacetyl 생성)

  • Kim, Dong-Wook;Chung, So-Young;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.120-126
    • /
    • 1989
  • Streptococcus diacetylactis and Leuconostoc cremoris were isolated from commercial culture and the effects of culture conditions on the diacetyl production by these strains and their mixture(1:1) were investigated. Optimum temperatures and culture times for the diacetyl production by Str. diacetylactis, Leu, cremoris and their mixture were 60hr at $22^{\circ}C$(diacetyl content, 2.24ppm), 48hr at $22^{\circ}C$(2.29ppm) and 48hr at $22^{\circ}C$ (2.21ppm), respectively Optimum initial pH for the diacetyl production by Str. diacetylactis, Leu. cremoris and the mixture were all 4.8(4.32, 6.66, 7.30ppm, respectively) and optimum sodium citrate concentrations(%, w/v) were 0.30(2.58ppm), 0.1(2.54ppm) and 0.1(2.52ppm), respectively. The diacetyl contents were gradually increased according as inoculation rates(%, w/v) were increased. The amounts of diacetyl produced under optimum conditions at 24hr incubation by Str. diacetylactis, Leu. cremoris and the mixture were 4.40, 6.59 and 7.25ppm, respectively. The most effective factor affecting diacetyl production under optimum condition was pH.

  • PDF

Effect of Sowing Rate of Mixture on the Growth Chracteristics, Forage Yield and Quality of Rye and Rape (호밀과 유채의 혼파비율이 생육특성, 사초수량 및 영양소 수량에 미치는 영향)

  • 권응기;김병완;성경일;김창주
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 1996
  • Rye(Secale cereale L.) shows lower dry matter yield and nutrient content when it was harvested before wintering. This study was conducted to investigate how effect forage rape(Brassicu napus Subsp oleifera), which carries early maturity and can be harvested before wintering, on the increase of the forage yield and nutrient content when rye was sown mixed with the rape. Optimum sowing rate of the rye/rape mixture was also pursued in this study. The five treatment of rye single, rape single, ryel20+rape 1Okg/ha, rye84+rape 7kg/ha and rye60+rape 5kg/ha were sown on 2 September 1989. Rape single plot was cut one time(l9 November 1989) and the other plots were cuted two times(19 November 1989 and 20 May 1990). In botanical composition of the mixtures, rape recorded dominant ratio with 64~69% at the autumn cut. The rye84+rape 7kg/ha mixture plot marked the highest dry matter yield with 4.46t/ha among all the experimental plot at the autumn cut(P<0.05). In year total yield of dry matter(t/ha), rye single, rape single, rye120+rape IOkg/ha, rye84+rape 7kg/ha and rye60+rape 5kg/ha marked 13.6, 4.1, 12.7, 12.9 and 11.8, respectively. In crude protein content, the rye single plot was 17.2% at the autumn cut on the other hand the mixture plots showed increasing tendency with 18.0~19.9%. In crude fiber content, the mixture plots were remarkably lower than rye single plot. In year total yield of crude protein, rye84+rape 7kg/ha mixture plot showed the highest yield with 1.6lt/ha among all the experimental plots. Ratio of crude protein yield to crude fiber yield, rye84+rape 7kg/ha tended to be higher than the other mixture plots. It is confirmed that the rye/rape mixture can produce more forage than the rye single cropping when they are harvested in late autumn, besides the mixture forage contains higher crude protein than that rye single forage. It can be said that the rydrape mixture is more useful than the rye single cropping, and optimum sowing rate of the mixture is 84kg/ha of rye+7kg/ha of rape.

  • PDF

Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling (볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석)

  • Kim, Seong-Jun;Choi, Jai Young;Shin, Hyunho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.