• Title/Summary/Keyword: optimum dosage

Search Result 274, Processing Time 0.025 seconds

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

A Study on the Application of Pre-Chemical Treatment on the Decentralized Domestic Wastewater Reclamation System (도시의 분산형 생활오수 재생시스템에 화학적 전처리공정도입에 관한 연구)

  • Lee, Sang-Woo;Park, Young-Mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.115-121
    • /
    • 2006
  • The purpose of this study was to investigate applicability of pretreatment on the existing biological treatment for domestic wastewater reclamation. From Jar Tests, it was found that optimum dosage of coagulant was PAC 0.5mg/L and $FeCl_3$ 180mg/L for urban sewage. In this study, PAC 0.5mg/L was selected considering sludge production and the amount of coagulant required. In a continuous experiment performed with combining chemical coagulation and biological treatment, a considerable removal efficency was obtained in term of BOD, SS, T-N, T-P and ABS. When the raw sewage was supplied into the pre-chamical treatment facility, the removal of BOD and SS was 48.3% and 81.1%. However T-N removal was very low which means T-N consists of $NH_3-N$ mostly. T-P was almost completely recluced by the chemical addition. The effluent BOD & SS was 57~76 and 21~43mg/L, which could reduce the size of biological treatment facility. From the cost estimation pre-chemical treatment could save around half of the area required for biological treatment with post ceagulation.

Evaluation of Design Parameter on Residuals Treatment Facilities in Membrane Water Treatment Plants (막여과 정수장에서의 배출수처리시설 설계인자 평가)

  • Moon, Yong-Taik;Seo, In-Seok;Kim, Hong-Suck;Park, No-Suk;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.138-146
    • /
    • 2006
  • The characteristics of backwash and concentrate discharges depend upon the quality of the water being treated and the net recovery of the membrane system. This paper is to indicate a design methods on the capacities of residuals treatment facilities in membrane processes for drinking water. We operated a demonstration membrane plant with a recovery rate of 90% for designing G-water treatment plant. We investigated on design parameter (optimum coagulant dosage and surface loading rate etc.) to design efficiently the residuals treatment facilities. The settling test was conducted with 1m columns dosing PACl to kaolin and membrane residuals under the experimental condition that discharge permit was under a 60mg/L. When the quantity of membrane residuals was $1,575m^3/day$, the estimated results for 1st thickener demonstrated the surface loading rate of 14.4m/day, detention time of 5.83hr, available depth of 3.5m.

Recovery of nitrogen by struvite precipitation from swine wastewater for cultivating Chinese cabbage

  • Ryu, Hong-Duck;Lee, Han-Seul;Lee, Sang-Ill
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1253-1264
    • /
    • 2015
  • This study assessed the fertilizing value of struvite deposit recovered from swine wastewater in cultivating Chinese cabbage. Struvite deposit was compared with commercial fertilizers: complex, organic and compost to evaluate the fertilizing effect of struvite deposit. Laboratory pot test obviously presented that the struvite deposit more facilitated the growth of Chinese cabbage than organic and compost fertilizers even though complex fertilizer was the most effective in growing Chinese cabbage. It was revealed that the growth rate of Chinese cabbage was simultaneously controlled by phosphorus (P) and potassium (K). Also, the nutrients such as nitrogen (N), P, K, calcium (Ca) and magnesium (Mg) were abundantly observed in the vegetable tissue of struvite pot. Specifically, P was the most abundant component in the vegetable tissue of struvite pot. Meanwhile, the utilization of struvite as a fertilizer led to the lower accumulation of chromium ($Cr^{6+}$) than other pots, except for compost fertilizer pots, and no detection of cadmium (Cd), arsenic (As) and nickel (Ni) in the Chinese cabbage. The experimental results proved that the optimum struvite dosage for the cultivation of Chinese cabbage was 2.0 g struvite/kg soil. On the basis of these findings, it was concluded that the struvite deposits recovered from swine wastewater were effective as a multi-nutrient fertilizer for Chinese cabbage cultivation.

Electrochemical Decolorization of a Rhodamine B using Dimensionally Stable Anode (불용성 전극을 이용한 Rhodamine B의 전기화학적 탈색)

  • Kim, Dong Seog;Park, Young Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2007
  • This study has carried out a performance of dimensionally stable anode for the purpose of decolorization of Rhodamine B (RhB) in water. Seven kinds of 1, 2 and 3 component electrodes were prepared by plating and thermal deposition, which were coated by the oxides of Pt, Ru, Ir, Sn-Sb, Ir-Sn-Sb, Ru-Sn-Sb and Ru-Sn-Ti on Ti metal surface, respectively. Performance for RhB decolorization of the seven electrodes lay in: Ru-Sn-Ti/Ti ${\fallingdotseq}$ Ru-Sn-Sb/Ti > Ir-Sn-Sb/Ti > Sn-Sb/Ti > Ru/Ti > Ir/Ti > Pt/Ti. The effects of electrode area and distance, electrolyte type and concentration, current density and pH were investigated on the decolorization of RhB using Ru-Sn-Ti/Ti electrode. Decolorization of RhB was not influenced by electrode area and distance largely, however wattage was influenced by them. NaCl was superior to the decolorization of RhB than $Na_2SO_4$. Optimum NaCl dosage and current density were 0.5 g/L and $0.183A/cm^2$, respectively. The pH effect of decolorization of RhB was not significant within the range of 3-7.

Conditions for the Extraction of Polyphenols from Radiata Pine (Pinus radiata) Bark for Bio-Foam Preparation

  • LEE, Min;JEONG, Su Hyeon;MUN, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.861-868
    • /
    • 2020
  • The use of polyphenol extracts from radiata pine (Pinus radiata) bark as raw materials for bio-foams was investigated along with the optimal NaOH extraction conditions. The targeted yield of alkaline extracts was 60%, and the targeted pH was 11 to 12. The radiata pine bark was composed of 70% of a 1% NaOH extract, which contained mainly polyphenols, such as proanthocyanidin (PA). As the particle size of the bark decreased, the yield of the 1% NaOH extracts increased from 57 to 87%. A range of NaOH concentrations, liquor ratios, and extraction times were explored to establish an economic polyphenol extraction method. More than 60% of the alkaline extract was extracted, and the pH of the extract was approximately 12 when the optimum extraction conditions were employed, i.e., a liquor to bark ratio of 5:1, a NaOH dosage of 17 to 18% based on the bark weight, and a 1 h extraction time. Following neutralization of the alkaline extract, structural analysis indicated severe structural changes in the PA during the alkaline extraction. Because the alkaline extract was barely soluble in the solvent used for the structural analyses, it is assumed that chemical modification is required to increase the solubility of the alkaline extract for the production of bio-foams.

Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal

  • Namvar-Mahboub, Mahdieh;Jafari, Zahra;Khojasteh, Yasaman
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2020
  • The current study focused on the preparation of low-cost PVC-based adsorbing membrane. Metakaolin, as available adsorbent, was embedded into the PVC matrix via solution blending method. The as-prepared PVC/metakaolin mixed matrix membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), pure water permeability and contact angle measurements. The results confirmed the improvement of PWP and hydrophilicity due to the presence of metakaolin in the PVC matrix. Additionally the structure of PVC membrane was changed due to the incorporation of metakaolin in the polymer matrix. The static adsorption capacity of all samples was determined through dye removal. The effect of metakaolin dosage (0-7%) and pH (4, 8, 12) on dye adsorption capacity was investigated. The results depicted that the highest adsorption capacity was achieved at pH of 4 for all samples. Additionally, adsorption data were fitted on Langmuir, Freundlich, and Temkin models to determine the appropriate governing isotherm model. Finally, the dynamic adsorption capacity of the optimum PVC/metakaolin membrane was studied using dead-end filtration cell. The dye removal efficiency was determined for pure PVC and PVC/metakaolin membrane. The results demonstrated that PVC/metakaolin mixed matrix membrane had a high adsorption capacity for dye removal from aqueous solution.

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

Inactivation of Legionella pneumophila by Electrochemical Disinfection (전기화학적 소독에 의한 Legionella pneumophila 불활성화)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.613-619
    • /
    • 2007
  • This study has carried out a performance of dimensionally stable anode for the purpose of disinfection of Legionella pneumophila in water. Three kinds of electrode were prepared by plating and thermal deposition, which were coated by the oxides of Pt, Ru and Ir on Ti metal surface, respectively. The order of disinfection performance for Legionella pneumophila was Ru/Ti > Ir/Ti > Pt/Ti. Free Cl and $ClO_2$ generation of Ir/Ti electrode was higher than that of two electrodes. However, the concentrations of generated $H_2O_2$ and $O_3$ of the Ru/Ti electrode were highest among the three electrodes. The higher NaCl concentration was, the more oxidants was generated and disinfection effect was increased. However, optimum NaCl dosage was 0.0125% due to the regulation on the conductivity and $Cl^-$ concentration for the cooling water quality of air conditioning and refrigeration equipment. With the increase of current, oxidants was more generated and following disinfection effect was increased. The increase of electrode distance reduced oxidants generation due to the low electric power, and their disinfection effect was decreased accordingly.

A study on Enhanced Efficiencies of Methane Fermented Alcohol Wastewater Treatment by Supplement of Nutrients (영양물질 주입에 의한 메탄 발효 주정폐액의 효율증진에 관한 연구)

  • 안승구;이인학;진서형
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.40-49
    • /
    • 1997
  • In Korea, naked barley and tapioca are main raw materials for the production of fermentation ethyl alcohol, and one million drums bf 95% fermentation ethyl alcohol is produced per year by use of them. Stillage of alcoholic fermentation is mostly digested by methane fermentation process, and methane gas occured if methane fermentation process is recovered and mixed with fuel to decrease 25-30% for total fuel used in factories. In the anaerobic digestion process of naked barley stillage, supplement of nutrients is necessary to slove the problems caused by inhibitory materials contained if stillage and deficiency of nutrients. Therefore, the objective of this study was to examine why the anaerobic digesters using the naked barley distillery wastewater have shown the poor digestability frequently and how to control it. As the poor digestion was supposed to be occurred by the lack of iron as trace nutrient, the experiments were carried out to find out the optimum dosage and the way of addition of iron and to assess the quantitative evaluation of the type of iron in digesters. Initially, bottle test as batch digesters and lab-scaled continuous flow digesters were used in order to determine the digestion characteristics with tapioca and naked barley distillery wastewater. According to the results of batch tests, the poor digestion was caused by volatile fatty acids and could be improved by adding of calcium. The activity of the methanogenic bacteria were increased remarkably when the iron was added to the digester in the form of mixture with substrates.

  • PDF