• Title/Summary/Keyword: optimum cutting condition

Search Result 102, Processing Time 0.028 seconds

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

A study on optimum of cutting ability with change of tool rake angles (바이트 인선각의 변화에 따른 절삭성의 최적화 방안에 관한 연구)

  • 염성하;오재응;현청남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1043-1054
    • /
    • 1988
  • The optimum cutting condition of rake angle in turning was investigated in SM45C and SM20C. Results of experiments in SM45C and SM20C are as follow. Specific cutting resistance became higher as the depth of cutting, feed or cutting velocity decreases at same rake angle and resistance became low value at 20.deg.(SM45C), 10.deg.(SM20C). The optimum cutting condition for SM45C is depth of cutting 0.7mm, rake angle 30.deg., cutting velocity 200mm/min, feed 0.1mm/rev, and for SM20C is depth of cut 0.5mm, rake angle 10.deg., cutting velocity 150mm/min, feed 0.1mm/rev.The rake angle for good roughness is 15.deg for SM45C, and that for SM20C is 25.deg. The roughness is influenced by feed and it has the lowest value at 0.1mm/rev and the cutting condition is closely related with the change of cutting velocity and feed.

Application of Design of Experiment Optimum Working Condition in Flat End-Milling (평면 엔드밀의 최적 가공조건을 위한 실험계획법의 적용)

  • Lee, Sang-Jae;Bae, Hyo-Jun;Seo, Young-Baek;Park, Heung-Sik;Jun, Tae-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • The End-milling has been widely used in the industrial world because it is effective to cutting working with various shape. Recently the end-milling is demanded the high-precise technique with good surface roughness and rapid manufacturing time for precision machine and electronic elements. The cutting working of end-milling such as, cutting direction, revolution of spindle, feed rate and depth of cut have an effect on optimum surface roughness. This study was carried out to decide the working condition for optimum surface roughness and rapid manufacturing time by design of experiment and ANOVA. From the results of this study, the optimum working condition for end milling is upward cutting in cutting direction, 600rpm in revolution of spindle, 240mm/mm in feed rate, 2mm in axial depth of cut and 0 25mm in radial depth of cut. The design of experiment has become an useful method to select optimum working condition mend-milling.

  • PDF

A Study on Optimum Cutting Conditions and Tool Life in Deep Hole Drilling for SM55C by BTA Drill (BTA드릴에 의한 SM55C의 심공가공시 최적절삭조건과 공구수명에 관한 연구)

  • 장성규;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.43-49
    • /
    • 1998
  • The deep hole drilling has an increasing demands because of its wide range applications and its good productivity. The BTA drills are capable of machining for having a large length to diameter ratio in single pass to higher degree of accuracy and surface finish. It's really necessary that the investigation for the deep hole drilling by the BTA drill because its required quality should be satisfied with single pass. This thesis deal with the experimental results obtained during single tube BTA system machining on SM55C steel for different machining conditions. The results of the investigation on the optimum cutting condition selecting and tool life reveals as follows. (1) The optimum cutting condition was cutting speed, V = 42 m/min and feed speed. F = 90 mm/min and the tool life was about 10 meters. (2) Surface roughness was $12\mum$ and the roundness was less using $16mum$single edge BTA drill in testing cutting condition.

  • PDF

A Machinability test on the cutting position in the ball-end milling of hemisphere (볼엔드밀 반구가공에서 가공 위치에 따른 절삭성 평가)

  • 박희범;김석원;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.890-893
    • /
    • 2000
  • In this paper, the test of machinability according to the cutting positions when the ball end milling of hemispheric workpiece is carried out to find the optimum cutting position of free form surface die. Tool runout, cutting force. and chip form are measured. The results show that the optimum cutting condition to get the constant feed per tooth is the inclined angle of 40 degree of workpiece.

  • PDF

Cutting Condition for Improving Cutting Efficiency and Accuracy by Ball Endmill on a Machining Center (머시닝센터에서 볼 엔드밀가공으로 고능률, 고정밀도 제고를 위한 표면가공 조건)

  • 윤종학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.99-103
    • /
    • 1998
  • The curved surface machined by plate end mill causes a excess non-cutting volume, in these cases ball end mill is used for the curved surfaces. This study is aimed to obtain the optimum cutting conditions of various cutting speed, table speed, tool diameter, radius of curvature roughness on the conditions of various cutting speed, tool diameter, radius of curvature when machining the curved surface using the ball end mill. After designing curve rates, obtaining NC data by CAD/CAM system through CC-Cartesian method and transferred the data through DNC system, we machined the specimens by the CNC machining center, The surface roughness of specimens was measured by surface roughness tester and CNC 3D coordinate measuring machine. The cutting condition were the same as follow velocity; 15, 20, 25 30m/min, feed rate;40, 60, 80, 100m/min and radius of curvature; 30,40,50,60mm, tool diameters; ø8, ø12, ø16, ø 20mm. Analizing the working results, we can acquire the optimum cutting condition of curved specimen at the cutting velocity of 20~25m/min and the feed rate of 80mm/min. As the same cutting condition the best surface roughness was showed at ø16mm of the tool diameter. But the tool diameter was smaller than ø8mm. we could improve for the surface roughness by controlling the cusp.

  • PDF

Optimum Working Condition of Surface Roughness for End-Milling Using Taguchi Design (다구찌 기법을 이용한 엔드밀 가공시 최적 표면거칠기를 위한 가공조건선정)

  • 이상재;배효준;전태옥;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.553-556
    • /
    • 2003
  • End-milling have been used in the industrial world because it is very effective to the manufacture of mechanical parts with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study carried to decide the optimum cutting condition for surface roughness and rapid manufacturing time using design of experiment and ANOVA. From the results of experimentation, surface roughness have an effect on cutting direction, spindle speed and depth of cut. And then the optimum condition used Taguchi design is upward cutting in cutting direction, 600rpm in spindle speed, 240mm/min feed rate, 2mm in axial depth of cut and 0.25mm radial depth of cut. By using design of experiment, it is effectively represented shape characteristics of working surface in end-milling.

  • PDF

A study on the cutting character of soft materials(Cu alloy and Al alloy) with change of tool rake angles (공구 경사각의 변화에 따른 연질 재료(Cu alloy and Al alloy)의 절삭 특성에 관한 연구)

  • 염성하;현청남;오재응
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.85-96
    • /
    • 1988
  • The optimum cutting condition for rake angle in turning was investigated in (6-4) Brass and Al alloy. Results of experiments in (6-4) Brass and Al alloy are as follow. Specific cutting resistance becames higher as the depth of cutting, feed or cutting velocity decreases at same rake angle and resistance appear low value 20.deg., 25.deg.(6-4)brass, 0.deg. 20.deg.(Al alloy). The optimum cutting condition for(6-4) Brass is depth of cutting 0.5mm, rake angle 25.deg., cutting velocity 80m/min, feed 0.1mm/rev and for Al alloy is depth of cutting 0.1mm, rake angle 0.deg., cutting velocity 200m/min, feed 0.5mm/rev. The rake angle for good roughness is 20.deg. at (6-4) Brass, and that for Al alloy is 15.deg. The roughness is influenced by feed and it has the lowest value at 0.1mm/rev and the cutting condition is influenced by rake angle only.

  • PDF

저순도 알루미나 세라믹 가소결재의 피삭성

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.33-38
    • /
    • 1995
  • In this study, unsistered, pre-sintered and sintered low purity alumina ceramics were machined with various tools to clarify the machniability, the optimum tool materials and the optimum tool materials and the optimum cutting conditions. The maon conclusions obtained were as follows. (1) Machined withalloy steel tool, the machinabilty of te pre-sintered ceramics becomes better with the decrease of pre-sintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide tool K01, the tool life in machining white body was the longest, and the machinabilty of pre-sintered ceramics becomes poorer with the increase of the pre-sintering temperature. (3) In the case of ceramic tool, the 10000-1100 .deg. C pre-sintered ceramics showed te best machinability within a certain cutting speed range. So far as dry machining, the above combination and conditions showed the highest productivity. (4) When the pre-sintered ceramics were wet machined withsintered diamond tool, the tool life becomes extremelylong, and higher cutting speed can be can be used than in the case offull-sintered ceramics. The productivity of wet cutting is much higher than that ofdry cutting.

  • PDF

Machinability of Pre-sintered Alumina Ceramics (알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능-)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF