• 제목/요약/키워드: optimum catalyst

검색결과 308건 처리시간 0.027초

Optimization and Packed Bed Column Studies on Esterification of Glycerol to Synthesize Fuel Additives - Acetins

  • Britto, Pradima J;Kulkarni, Rajeswari M;Narula, Archna;Poonacha, Sunaina;Honnatagi, Rakshita;Shivanathan, Sneha;Wahab, Waasif
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.70-79
    • /
    • 2022
  • Biodiesel production has attracted attention as a sustainable source of fuel and is a competitive alternate to diesel engines. The glycerol that is produced as a by-product is generally discarded as waste and can be converted to green chemicals such as acetins to increase bio-diesel profitability. Acetins find application in fuel, food, pharmaceutical and leather industries. Batch experiments and analysis have been previously conducted for synthesis of acetins using glycerol esterification reaction aided by sulfated metal oxide catalysts (SO42-/CeO2-ZrO2). The aim of this study was to optimize process parameters: effects of mole ratio of reactants (glycerol and acetic acid), catalyst concentration and reaction temperature to maximize glycerol conversion/acetin selectivity. The optimum conditions for this reaction were determined using response surface methodology (RSM) designed as per a five-level-three-factor central composite design (CCD). Statistica software 10 was used to analyze the experimental data obtained. The optimized conditions obtained were molar ratio - 1:12, catalyst concentration - 6 wt.% and temperature -90 ℃. A packed bed reactor was fabricated and column studies were performed using the optimized conditions. The breakthrough curve was analyzed.

Ag/γ-Al2O3 촉매상에서 탄화수소-SCR(Selective Catalytic Reduction) 연구 (A study of hydrocarbon SCR(selective catalytic reduction) on Ag/γ-Al2O3 catalyst)

  • 김문찬;이철규
    • 분석과학
    • /
    • 제18권2호
    • /
    • pp.139-146
    • /
    • 2005
  • 본 연구에서는 자동차의 배출가스중에 포함된 NO를 비선택적 촉매환원법으로 환원시켜 제거하기 위하여 Ag의 함량을 여러 가지로 달리하여 ${\gamma}-Al_2O_3$에 담지한 촉매를 제조하였고, 제조한 촉매에 대하여 온도, 산소농도, 아황산가스농도의 변화에 따른 $NO_x$의 전환율에 대하여 연구하였다. 또한 제조한 촉매의 물성분석을 통하여 촉매의 상태와 $NO_x$의 전환율과의 관계를 알아보았다. 제조한 각각의 촉매에 대하여 반응조건을 여러 가지로 달리하여 반응실험을 한 결과 $Ag/{\gamma}-Al_2O_3$ 촉매는 Ag의 함량이 2 wt%일 때, 그리고 반응온도가 약 $450^{\circ}C$일 때 가장 높은 $NO_x$ 전환율을 나타냈다. 반응실험 전 후의 촉매에 대하여 X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Temperature Programmed Reduction (TPR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS)등의 분석 결과와 반응실험 결과를 비교하여 볼 때 Ag의 산화상태가 잘 유지되지 못하여 고온에서는 $NO_x$ 전환율이 낮아지는 것으로 나타났다.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • 청정기술
    • /
    • 제21권3호
    • /
    • pp.184-190
    • /
    • 2015
  • 대부분의 LNT 촉매는 낮은 온도 영역에서의 NOx 산화를 위하여 Pt와 같은 귀금속류를 사용하는 것은 경제적인 부담을 가지고 있다. 따라서, 본 연구는 이러한 문제를 해결하기 위하여 시도되었다. 즉, Pt, Pd, Rh 등과 같은 귀금속류(platinum group metal, PGM)를 사용하지 않는 LNT (lean NOx trap)용 DeNOx 촉매를 개발하기 위해 시도하였다. 이를 위해서 예비실험을 통해 Pt등 귀금속류등의 PGM (platinum group metal)을 사용하지 않는 Al/Co/Ni 혼합 금속 산화물을 선정하였다. 궁극적으로는, 선정된 촉매의 소성온도에 따른 물리화학적 특성 변화가 NOx 전환율에 미치는 영향을 살펴보고자 하였다. 이들의 물리화학적인 성질을 평가하기 위해 XRD, EDS, SEM, BET 분석을 실시하였다. 이러한 평가를 실시한 결과, 모든 소성온도에서 혼합금속 산화물은 Co2AlO4 및 NiAl2O4의 스피넬 구조가 혼재되어 있는 것으로 나타났고, NOx 기체들의 산화-환원 반응이 이루어지기에는 충분한 기공부피와 기공크기를 갖고 있음을 알 수 있었다. 그러나 NH3-TPD 분석 결과에서는 소성온도가 700 ℃ 이하를 유지해야 하는 것으로 판단되었다. 더욱이 ramp test를 통해서는 NO 및 NOx 전환율을 동시에 만족할 수 있는 시료는 소성온도는 500 ℃에서 처리된 경우임을 알 수 있었다. 이러한 결과 등을 바탕으로, Al/Co/Ni=1.0/2.5/0.3 혼합 금속 산화물의 최적 소성온도는 500 ℃임을 알 수 있었다.

펜톤시약에 의한 이온교환수지의 직접산화분해 (The Direct Decomposition of Ion-Exchange Resins by Fenton's Reagent)

  • 김길정;손종식;류우석
    • 방사성폐기물학회지
    • /
    • 제5권3호
    • /
    • pp.221-227
    • /
    • 2007
  • 음이온교환수지인 IRN-78및 IRN-77과의 혼합 수지를 액체 상태로 직접 분해 처리하기 위하여 Fenton 시약을 이용하였다. 개선된 분해방법의 특징은 수지를 먼저 건조시키고 $FeSO_4$ 용액을 수지에 완전히 흡수시킨 후 일정량의 $H_2O_2$를 첨가하여 분해반응을 유도하는 방법을 적용하였다. 촉매로서 $CuSO_4,\;Cu(NO_3)_2$ 및 IRN-77 수지의 분해시 사용한 $FeSO_4$를 각각 사용하여 각 이온교환수지의 단독 및 혼합수지의 분해에 필요한 적절한 촉매와 그의 농도 및 $H_2O_2$의 소요량을 측정하였다. IRN-78 수지에 대해 $CuSO_4$ 촉매를 사용한 경우, 초기 분해반응을 유도하기 위해 $40^{\circ}C$까지 가열이 필요하였으며, 반응유도시간은 촉매의 적정온도에서 약 20분 이내 개시되는 것으로 나타났다. 동 수지에 $FeSO_4$를 사용한 경우에는 가열 없이 즉시 분해반응이 진행되었으며 분해율도 수% 높게 나타났다. 결론적으로 IRN-78 및 IRN-77과의 혼합수지의 분해를 위한 최적 촉매는 $FeSO_4$로 나타났으며 가열하지 않고 상온에서 반응유도시간 없이 각 수지를 단독으로 분해한 경우보다 적은 양의 $H_2O_2$로 완전히 액상으로 분해시킬 수 있는 좋은 결과를 얻었다. 또한 이들 각각의 수지 및 혼합수지에 대한 적절한 촉매 및 적정 농도와 완전분해에 필요한 $H_2O_2$의 양을 제시하였다.

  • PDF

GlidArc 플라즈마를 이용한 메탄 부분산화 및 Ni 촉매 개질 특성 (Characteristic of Partial Oxidation of Methane and Ni Catalyst Reforming using GlidArc Plasma)

  • 김성천;전영남
    • 대한환경공학회지
    • /
    • 제30권12호
    • /
    • pp.1268-1272
    • /
    • 2008
  • 부분산화가 적용된 저온플라즈마는 메탄으로부터 합성가스를 생산하는 기술이다. 저온 플라즈마 기술은 수증기 개질, 이산화탄소 개질을 이용한 개질기 보다 소형화와 시동특성이 우수한 장점을 가지고 있으며 다양한 분야에 적용이 가능하다. 본 연구에서는 GlidArc 방전을 이용한 저온플라즈마 개질기를 제안하였다. 개질 특성을 파악하고자 변수별 연구로서 가스 조성비율(O$_2$/CH$_4$), 수증기 주입량, 니켈과 철 촉매의 비교 및 이산화탄소 주입량에 대해 실험을 수행하였다. 최적의 수소 생산 조건은 O$_2$/C비가 0.64, 주입 가스유량은 14.2 L/min, 촉매의 반응기의 내부 온도는 672$^{\circ}C$, 주입 가스 량에 대한 수증기 유량 비율은 0.8 그리고 유입전력이 1.1 kJ/L일 때, 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때 메탄의 전환율, 수소 수율 그리고 개질기 열효율은 각각 46.5%, 89.1%, 37.5%를 나타냈다.

바이오가스 개질을 위한 글라이딩 아크 플라즈마 개질 시스템 개발 (Development of a Gliding Arc Plasma Reforming System to Produce Hydrogen Form Biogas)

  • 김성천;양윤철;전영남
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.423-429
    • /
    • 2009
  • 본 연구의 목적은 바이오가스를 이용하여 고농도 수소 생산과 CO 제거가 가능한 글라이딩아크 플라즈마 개질 시스템의 개발이다. 이를 위하여 수성가스 전이반응기는 수증기 주입량 변화,촉매층 온도 변화에 대하여, 선택적 산화반응기는 촉매층 온도변화, 공기주입량에 대하여 실험을 진행하였다. 기준조건은 S/C 비 3, 촉매층 온도 $700^{\circ}C$, 전체가스량 16 L/min, 입력전력 2.4 kW, 바이오가스 구성비($CH_4$ : $CO_2$ ) 6 : 4이다. 이때의 실험결과는 HTS의 최적조건은 S/C비 3, 반응온도 $500^{\circ}C$, LTS의 최적조건은 S/C 비 2.9, 반응온도 $300^{\circ}C$이다. 또한 PROX I단의 최적조건은 각각 공기유입량 300 mL/min, $190^{\circ}C$, PROX II단의 최적조건은 공기유입량 200 mL/min, $190^{\circ}C$을 나타내었다. 반응기를 모두 지난 후의 합성가스는 $H_2$ 수율 55%, $CH_4$ 전환율 97%, $CO_2$ 전환율 97%, CO 선택도는 0%로 바이오가스를 개질하여 생성된 합성가스는 높은 수율을 나타내며, CO 선택도는 0%를 나타내었다.

Application of SNCR/SCR Combined process for effective operation of SCR Process

  • 최성우;최상기
    • 한국환경과학회지
    • /
    • 제12권1호
    • /
    • pp.47-54
    • /
    • 2003
  • This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH$_3$/O$_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O$_2$. Commercial catalyst, sulfated V$_2$O$\_$5/-WO$_3$/TiO$_2$, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h$\^$-1/ and 6,000 h$\^$-1/ in the SNCR and SCR reactors, respectively. SNCR NOx reduction effectively occurred in a temperature window of 900-950$^{\circ}C$. About 88% NOx reduction was achieved with an optimum temperature of 950$^{\circ}C$ and NSR=1.5. SCR NOx reduction using commercial V$_2$O$\_$5/-WO$_3$-SO$_4$/TiO$_2$ catalyst occurred in a temperature window of 200-450$^{\circ}C$ 80-98% NOxreduction was possible with SV=2400 h$\^$-1/ and a molar ratio of 1.0-2.0. A SNCR/SCR(SV=6000 h$\^$-1/) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h$\^$-1/) unit process of 98% NOx reduction. The NH$_3$-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH$_3$ slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900$^{\circ}C$-950$^{\circ}C$, and SCR space velocity of 6000 h$\^$-1/. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of T$\_$SNCR/=950$^{\circ}C$, T$\_$SCR/=350$^{\circ}C$, 5% O$_2$, SV=6000 h$\^$-1/ and NH$_3$/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.

대두유 및 미강유의 찌꺼기유로부터 토코페롤의 농축을 위한 메타세시스 반응효과 (The Effects of Metathesis for Concentrating the Tocopherols from Soybean and Rice-bran Scum Oils)

  • 안호근;문일식
    • KSBB Journal
    • /
    • 제10권4호
    • /
    • pp.449-454
    • /
    • 1995
  • 대두유 및 미강유의 찌꺼기유내에 존재하는 고부가가치의 토코페롤을 농축하기 위하여, 찌꺼기유중의 불포화 유라지방산의 제거에 에타서l시스반응을 적용하고 그에 따른 농축효과에 관하여 연구하였다. 함유된 스테롤은 흔합용매법에 의해 제거하였고, 메타세시스반응은 헬륨분위기의 회분삭반응기를 사용하였다. 대두유 및 미강유의 찌꺼기유에 함유되어 있는 토코페롤은 헥산용매중에서 또는 공기존재하에서 가열하면 쉽게 소실되었다. 스테롤을 제거한 여액의 에타세시스반응에 있어서, 사용한 $Re_2O_7/Al2O_3$ 촉매는 12.8% (w/w)의 담지율이 가장 좋았는데, 이는 고담지율에서의 [$Re_2O_7$]과 테트라에틸주석이 반응하여 메타세시스에 유효한 활생종을 생성하기 때문으로 생각되었다. 촉매량은 원액 109당 O.5g의 경우가 최적이었으며, 반응온도는 $25^{\circ}C$가 가장 좋았다. 이 사살들로부터 찌꺼기유중의 토코페롤을 새로운 메타세시스반응에 의해 고농도로 항축할 수 있음을 알 수 있었다.

  • PDF

Optimization and characterization of biodiesel produced from vegetable oil

  • Mustapha, Amina T.;Abdulkareem, Saka A.;Jimoh, Abdulfatai;Agbajelola, David O.;Okafor, Joseph O.
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.147-163
    • /
    • 2013
  • The world faces several issues of energy crisis and environmental deterioration due to over-dependence on single source of which is fossil fuel. Though, fuel is needed as ingredients for industrial development and growth of any country, however the fossil fuel which is a major source of energy for this purpose has always been terrifying thus the need for alternative and renewable energy sources. The search for alternative energy sources resulted into the acceptance of a biofuel as a reliable alternative energy source. This work presents the study of optimization of process of transesterification of vegetable oil to biodiesel using NaOH as catalyst. A $2^4$ factorial design method was employed to investigate the influence of ratio of oil to methanol, temperature, NaOH concentration, and transesterification time on the yield of biodiesel from vegetable oil. Low and high levels of the key factors considered were 4:1 and 6:1 mole ratio, 30 and $60^{\circ}C$ temperatures, 0.5 and 1.0 wt% catalyst concentration, and 30 and 60 min reaction time. Results obtained revealed that oil to methanol molar ratio of 6:1, tranesetrification temperature of $60^{\circ}C$, catalyst concentration of 1.0wt % and reaction time of 30 min are the best operating conditions for the optimum yield of biofuel from vegetable oil, with optimum yield of 95.8%. Results obtained on the characterizzation of the produced biodiesel indicate that the specific gravity, cloud point, flash point, sulphur content, viscosity, diesel index, centane number, acid value, free glycerine, total glycerine and total recovery are 0.8899, 4, 13, 0.0087%, 4.83, 25, 54.6. 0.228mgKOH/g, 0.018, 0.23% and 96% respectively. Results also indicate that the qualities of the biodiesel tested for are in conformity with the set standard. A model equation was developed based on the results obtained using a statistical tool. Analysis of variance (ANOVA) of data shows that mole ratio of ground nut oil to methanol and transesterification time have the most pronounced effect on the biodiesel yield with contributions of 55.06% and 9.22% respectively. It can be inferred from the results various conducted that vegetable oil locally produced from groundnut oil can be utilized as a feedstock for biodiesel production.

NaOH/THF 공용매 전처리 목질계 바이오매스로부터 레불린산 생산 (Levulinic Acid Production from Lignocellulosic Biomass by co-solvent Pretreatment with NaOH/THF)

  • 이승민;한석준;김준석
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.265-272
    • /
    • 2023
  • 목질계 바이오매스는 조성분간의 결합이 치밀하고 높은 함량의 리그닌을 포함하여 전처리 공정이 필수적이다. 전처리 용매 중 테트라하이드로퓨란(THF)은 유기용매로 재사용이 가능하다는 장점이 있다. THF는 가격이 저렴하고 다양한 반응 조건에서 선택적으로 리그닌을 제거하고 물 혹은 이온성 액체와 공용매로 사용된다. 수산화 나트륨(Sodium hydroxide)은 바이오매스 내 ether결합을 파괴하여 리그닌을 우선적으로 용해시키며 셀룰로오스와 헤미셀룰로오스의 표면적을 확장시키는 역할을 한다. 본 연구에서는 NaOH/THF 공용매 전처리 공정을 적용하여 효과적 리그닌을 제거를 위한 전처리 특성을 파악하고 후속 공정인 산촉매 전환 공정을 통해 최적의 레불린산 전환 수율을 얻었다. 전처리 공정은 NaOH/THF 공용매 비율을 16가지 부피 비율로 수행되었으며 반응조건은 180℃에서 60분으로 고정하였다. 최적의 공용매 조건은 NaOH(5 wt%)/THF 공용매 90:10(v/v%)이였으며 76.8% 글루칸을 수득과 함께 90.1%의 리그닌을 제거하였다. 전처리 후속 공정인 산촉매 전환 공정은 반응시간 30~90분, 반응온도 160~200 ℃로 수행하였을 때, 산촉매 전환 공정의 최적 조건은 180 ℃에서 반응시간 60분이었며, 이 때의 레불린산 전환수율은 84.7%이다.