• 제목/요약/키워드: optimized signal control

Search Result 91, Processing Time 0.027 seconds

Measurement of Effectiveness of Signal Optimized Roundabout (회전교차로의 접근로 신호최적화를 통한 도입효과 분석)

  • Eom, Jeong Eun;Jung, Hee Jin;Bae, Sang Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2015
  • PURPOSES : Although signalized intersections have been considered the best way to control traffic volume in urban areas for several decades, roundabouts are currently being discussed as an alternative way to control traffic volume, especially when traffic is light. Because a roundabout's efficiency depends on the load geometry as well as the traffic volume, design guidelines for roundabouts are recommended only if the incoming traffic volume is very low. It is rare to substitute a roundabout for an existing signalized intersection in urban areas. This study aims to estimate the benefits from the transformation of an existing signalized intersection into a roundabout in an urban area. When there is a more moderate volume of traffic, roundabouts can be effectively used by optimizing signals located at an approaching roadway. METHODS : The methodologies of this paper are as follows: First, a signalized intersection was analyzed to determine the traffic characteristics. Second, the signalized intersection was transformed into a roundabout using VISSIM microscopic traffic simulation. Then, we estimated and analyzed the effects and the performance of the roundabout. In addition, we adjusted a method to improve the benefits of the transformation via the optimization of signals located at an approaching road to control the incoming traffic volume. RESULTS : The results of this research are as follows: The signal-optimized roundabout improved delays compared with the signalized intersection during the morning peak hour, non-peak hour, and evening peak hour by 1.78%, 12.45%, and 12.72%, respectively. CONCLUSIONS : According to the simulation results of each scenarios, the signal-optimized roundabout had less delay time than the signalized intersection. If optimized signal control algorithms are installed in roundabouts in the future, this will lead to more efficient traffic management.

DC Motor Control using Regression Equation and PID Controller (회귀방정식과 PID제어기에 의한 DC모터 제어)

  • 서기영;이수흠;문상필;이내일;최종수
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.129-132
    • /
    • 2000
  • We propose a new method to deal with the optimized auto-tuning for the PID controller which is used to the process -control in various fields. First of all, in this method, initial values of DC motor are determined by the Ziegler-Nichols method. Finally, after studying the parameters of PID controller by input vector of multiple regression analysis, when we give new K, L, T values to multiple regression model, the optimized parameters of PID controller is found by multiple regression analysis program.

  • PDF

Implementation of a Speaker-independent Speech Recognizer Using the TMS320F28335 DSP (TMS320F28335 DSP를 이용한 화자독립 음성인식기 구현)

  • Chung, Ik-Joo
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.95-100
    • /
    • 2009
  • In this paper, we implemented a speaker-independent speech recognizer using the TMS320F28335 DSP which is optimized for control applications. For this implementation, we used a small-sized commercial DSP module and developed a peripheral board including a codec, signal conditioning circuits and I/O interfaces. The speech signal digitized by the TLV320AIC23 codec is analyzed based on MFCC feature extraction methed and recognized using the continuous-density HMM. Thanks to the internal SRAM and flash memory on the TMS320F28335 DSP, we did not need any external memory devices. The internal flash memory contains ADPCM data for voice response as well as HMM data. Since the TMS320F28335 DSP is optimized for control applications, the recognizer may play a good role in the voice-activated control areas in aspect that it can integrate speech recognition capability and inherent control functions into the single DSP.

  • PDF

Developing and Evaluation of Coordinated Semi-Actuated Signal Control for Field Application (현장적용을 위한 연동형 반감응 신호제어 개발 및 분석)

  • Park, Soon-Yong;Lee, Suk-Ki;Jeong, Jun-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.451-462
    • /
    • 2014
  • In this paper, Coordinated Semi-Actuated Signal Control algorithm was developed and evaluated. According to the analysis of simulation, the coordinated semi-actuated signal control led to reduced vehicle delay as the difference of traffic volume between major and minor streets was getting bigger. But when there was relatively high traffic volume, or the equivalent amount of traffic volume on major and minor streets, optimized pre-timed signal control was verified to lower delay times compared to coordinated semi-actuated signal control; however, it might increase pedestrian delay. Therefore, the coordinated semi-actuated signal control should be implemented at intersections where traffic volume is relatively low.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

Optimization of Traffic Signals Using Intelligent Control Methods (지능제어기법을 이용한 신호등 주기 최적화)

  • Kim, Keun-Bum;Kim, Kyung-Keun;Chang, Wook;Park, Kwang-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.735-738
    • /
    • 1997
  • The traffic congestion caused by the exploding increase of vehicles became one of the severest social problems. Among the various approaches to solve this problem, controlling the length of traffic signals appropriately according to the individual traffic situation would be the most plausible and cost-effective method. To design a traffic signal controller which has such a property as adaptive decision-making process, we adopt fuzzy logic control method(fuzzy traffic signal controller), Moreover, using genetic algorithms we obtain an optimized fuzzy traffic signal controller (GA-fuzzy traffic signal controller). To evaluate and validate the proposed fuzzy and GA-fuzzy traffic signal controller, simulation results are presented.

  • PDF

Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems

  • Sadeghi, Mohamad-Ali;Daryabeigi, Ehsan
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.74-81
    • /
    • 2014
  • In this study, a brain emotional learning-based intelligent controller (BELBIC) is developed for the speed control of an interior permanent magnet synchronous motor (IPMSM). A novel and simple model of the IPMSM drive structure is established with the intelligent control system, which controls motor speed accurately without the use of any conventional PI controllers and is independent of motor parameters. This study is conducted in both real time and simulation with a new control plant for a laboratory 3 ph, 3.8 Nm IPMSM digital signal processor (DSP)-based drive system. This DSP-based drive system is then compared with conventional BELBIC and an optimized conventional PI controller. Results show that the proposed method performs better than the other controllers and exhibits excellent control characteristics, such as fast response, simple implementation, and robustness with respect to disturbances and manufacturing imperfections.

A Study on Operation Methodology of A Signalized Intersection Based on Optimization of Lane-Uses (차로배정 최적화를 고려한 신호교차로 운영방안에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.125-133
    • /
    • 2013
  • PURPOSES : The purpose of this study is to propose delay-minimizing operation methodology of a signalized intersection based upon optimization of lane-uses on approaching lanes for an intersection. METHODS : For the optimization model of lane-uses, a set of constraints are set up to ensure feasibility and safety of the lane-uses, traffic flow, and signal settings. Minimization of demand to saturation flow ratio of a dual-ring signal control system is introduced to the objective function for delay minimization and effective signal operation. Using the optimized lane-uses, signal timings are optimized by delay-based model of TRANSYT-7F. RESULTS : It was found that the proposed objective function is great relation with delay time for an intersection. From the experimental results, the method was approved to be effective in reducing delay time. Especially, cases for two left-turn lanes reduced greater delays than those for a left turn lane. It is noticed that the cases for different traffic volume by approach reduced greater delays than those for the same traffic volume by approach. CONCLUSIONS : It was concluded that the objective function is proper for lane-uses optimizing model and the operation method is effective in reducing delay time for signalized intersections.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.