• 제목/요약/키워드: optimization technique

검색결과 2,692건 처리시간 0.029초

다중방향성 정합선 최적화와 신뢰도 기반 공백복원을 이용한 스테레오 정합 (A Stereo Matching Technique using Multi-directional Scan-line Optimization and Reliability-based Hole-filling)

  • 백승해;박순용
    • 정보처리학회논문지B
    • /
    • 제17B권2호
    • /
    • pp.115-124
    • /
    • 2010
  • 최근 스테레오 정합 기술은 정합하고자 하는 픽셀을 포함한 국부적인(local) 영상의 정합 비용과 시차의 변화 비용을 누적하는 전역적(global)인 방법을 많이 사용하고 있다. 특히 전역적 스테레오 정합에서도 비용누적 (cost accumulation)의 방향을 일반적인 수평방향이 아닌 다수의 방향을 사용하는 연구가 늘고 있다. 본 논문에서는 기존의 스테레오 정합 기술을 다중 방향성 정합 기술로 확장하는 방법을 제안한다. 픽셀의 국부적인 정합 비용은 단순한 NCC (Normalized Cross Correlation)를 사용하였고 전역적 정합 기술의 하나인 정합선 최적화(Scan-line Optimization) 방법을 다중 방향으로 확장하는 기술을 제안하였다. 우선 정합선 최적화를 다중 방향으로 실행한 후 이들 결과를 이용하여 신뢰도가 높은 시차영상 (disparity image)을 획득한다. 반복적인 다중 방향 정합선 최적화 시행 후, 시차영상에서 남은 공백은 홀 복원 방법으로 계산한다. 시차가 구해진 픽셀에 대해서는 신뢰도 점수를 매긴 다음 이 점수를 확산하여 신뢰도 점수 테이블에서 가장 높은 값을 가지는 시차값으로 홀을 복원하였다. 제안하는 기술을 미들버리(Middlebury)의 스테레오 영상을 사용하여 오차를 분석하였다. 기존의 전역적 방법과 제안 기술을 이용하여 시차영상을 계산하고 그 오차를 비교하였다.

다구치 방법을 이용한 함정 RCS 형상최적화에 관한 연구 (A Study on Ship Shape Design Optimization for RCS Reduction Using Taguchi Method)

  • 조용진;박동훈;안종우;박철수
    • 대한조선학회논문집
    • /
    • 제43권6호
    • /
    • pp.693-699
    • /
    • 2006
  • This paper proposes a design optimization technique for ship RCS signature reductions using Taguchi method. The proposed technique comprises of i)evaluating initial RCS signatures, ii)defining critical areas which should be modified as design parameters, and threat factors which can't be controlled artificially as noise parameters, and finally iv)finding optimum parameters via analyzing signal to noise ratios for designated characteristics. We applied the technique to a model ship and found that it is suitable for radar stealth designs. In addition, the proposed technique is applicable to submarine designs against sonar threats.

Shape optimization by the boundary element method with a reduced basis reanalysis technique

  • Leu, Liang-Jenq
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.73-84
    • /
    • 1999
  • This paper is concerned with shape optimization problems by the boundary element method (BEM) emphasizing the use of a reduced basis reanalysis technique proposed recently by the author. Problems of this class are conventionally carried out iteratively through an optimizer; a sequential quadratic programming-based optimizer is used in this study. The iterative process produces a succession of intermediate designs. Repeated analyses for the systems associated with these intermediate designs using an exact approach such as the LU decomposition method are time consuming if the order of the systems is large. The newly developed reanalysis technique devised for boundary element systems is utilized to enhance the computational efficiency in the repeated system solvings. Presented numerical examples on optimal shape design problems in electric potential distribution and elasticity show that the new reanalysis technique is capable of speeding up the design process without sacrificing the accuracy of the optimal solutions.

저진동 차체의 필라 설계 및 최전화 기법 (Technology for Initial Design and Analysis of Vehicle Pillar Structures for Vibration)

  • 임홍재;이상범
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.395-402
    • /
    • 1995
  • In general low frequency vibration characteristics like an idleshake is mainly influeced by pillar section properties and joints. So the design technique development of vehicle pillar structures is required to initial design and vehicle development stage. In this paper to develop pillar structure design technique considering low frequency vibration characteristics, strain energy method, design sensitivity analysis method, and design optimization method using commercial finite element analysis program and optimization program are presented.

  • PDF

Force-finding of Tensegrity Structure using Optimization Technique

  • Lee, Sang Jin
    • Architectural research
    • /
    • 제17권1호
    • /
    • pp.31-40
    • /
    • 2015
  • A simple force-finding process based on an optimization technique is proposed for tensegrity structures. For this purpose, the inverse problem of form-finding process is formulated. Therefore, the position vector of nodes and element connectivity information are provided as priori. Several benchmark tests are carried out to demonstrate the performance of the present force-finding process. In particular, the force density distributions of simplex tensegrity are thoroughly investigated with the important parameters such as the radius, height and twisting angle of simplex tensegrity. Finally, the force density distribution of arch tensegrity is produced by using the present force-finding process for a future reference solution.

A SHAPE OPTIMIZATION METHOD USING COMPLIANT FORMULATION ASSOCIATED WITH THE 2D STOKES CHANNEL FLOWS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.25-40
    • /
    • 2008
  • We are concerned with a free boundary problem for the 2D Stokes channel flows, which determines the profile of the wing for the channel, so that the given traction force is to be distributed along the wing of the channel. Using the domain embedding technique, the free boundary problem is transferred into the shape optimization problem through the compliant formulation by releasing the traction condition along the variable boundary. The justification of the formulation will be discussed.

  • PDF

자기 평면 도파관 소자의 최적형상설 (Shape Optimization of Waveguide Tee Junction in H-plane)

  • 이홍배;한송엽;천창열
    • 대한전기학회논문지
    • /
    • 제43권6호
    • /
    • pp.1020-1026
    • /
    • 1994
  • This paper presents a technique to optimize the shape of waveguide components in H-plane. The technique utilizes the numerical optimization process which employs the vector finite element method. In the optimization process, the sensitivity of an objective function with respect to design variables is computed by introducting adjoint variables, which makes the computation easy. The steepest descent method is then employed to update design variables. As a numerical example, an H-plane waveguide teejunction was considered to obtain optimized shape. Comparison between the initial and optimized shape was made.

신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화 (Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis)

  • 박재용;임민규;오영규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

Computational Approaches for the Aerodynamic Design and Optimization

  • Lee, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.28-29
    • /
    • 2006
  • Computational approaches for the aerodynamic design and optimization are introduced. In this paper the aerodynamic design methods and applications, which have been applied to various aerospace vehicles at Konkuk University, are introduced. It is shown that system approximation technique reduces computational cost for CFD analysis and improves efficiency for the design optimization process.

  • PDF