• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.028 seconds

Optimization of compartments arrangement of submarine pressure hull with knowledge based system

  • Chung, Bo-Young;Kim, Soo-Young;Shin, Sung-Chul;Koo, Youn-Hoe;Kraus, Andreas
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.254-262
    • /
    • 2011
  • This study aims to optimize an arrangement of ship compartments with knowledge-based systems. Though great attention has been shown to the optimization of hull forms in recent years, the study on arrangement design optimization has received relatively little attention. A ship is both an engineering system and a kind of assembly of many spaces. This means that, to design an arrangement of ship compartments, it is necessary to treat not only geometric data but also knowledge on topological relations between spaces and components of a ship. In this regard, we select a suitable knowledge representation scheme for describing ship compartments and their relations, and then develop a knowledge-based system using expert system shell. This new approach is applied to create design variations for optimization on an arrangement of a pressure hull of a submerged vehicle. Finally, we explicate how our approach improves the design process.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

Structural optimal control based on explicit time-domain method

  • Taicong Chen;Houzuo Guo;Cheng Su
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The classical optimal control (COC) method has been widely used for linear quadratic regulator (LQR) problems of structural control. However, the equation of motion of the structure is incorporated into the optimization model as the constraint condition for the LQR problem, which needs to be solved through the Riccati equation under certain assumptions. In this study, an explicit optimal control (EOC) method is proposed based on the explicit time-domain method (ETDM). By use of the explicit formulation of structural responses, the LQR problem with the constraint of equation of motion can be transformed into an unconstrained optimization problem, and therefore the control law can be derived directly without solving the Riccati equation. To further optimize the weighting parameters adopted in the control law using the gradient-based optimization algorithm, the sensitivities of structural responses and control forces with respect to the weighting parameters are derived analytically based on the explicit expressions of dynamic responses of the controlled structure. Two numerical examples are investigated to demonstrate the feasibility of the EOC method and the optimization scheme for weighting parameters involved in the control law.

Quantum Bee Colony Optimization and Non-dominated Sorting Quantum Bee Colony Optimization Based Multi-relay Selection Scheme

  • Ji, Qiang;Zhang, Shifeng;Zhao, Haoguang;Zhang, Tiankui;Cao, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4357-4378
    • /
    • 2017
  • In cooperative multi-relay networks, the relay nodes which are selected are very important to the system performance. How to choose the best cooperative relay nodes is an optimization problem. In this paper, multi-relay selection schemes which consider either single objective or multi-objective are proposed based on evolutionary algorithms. Firstly, the single objective optimization problems of multi-relay selection considering signal to noise ratio (SNR) or power efficiency maximization are solved based on the quantum bee colony optimization (QBCO). Then the multi-objective optimization problems of multi-relay selection considering SNR maximization and power consumption minimization (two contradictive objectives) or SNR maximization and power efficiency maximization (also two contradictive objectives) are solved based on non-dominated sorting quantum bee colony optimization (NSQBCO), which can obtain the Pareto front solutions considering two contradictive objectives simultaneously. Simulation results show that QBCO based multi-relay selection schemes have the ability to search global optimal solution compared with other multi-relay selection schemes in literature, while NSQBCO based multi-relay selection schemes can obtain the same Pareto front solutions as exhaustive search when the number of relays is not very large. When the number of relays is very large, exhaustive search cannot be used due to complexity but NSQBCO based multi-relay selection schemes can still be used to solve the problems. All simulation results demonstrate the effectiveness of the proposed schemes.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

Shape Optimization of Laminated Composite Shell for Various Layup Configurations (적층배열에 따른 복합재료 쉘의 형상최적화)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.317-324
    • /
    • 2004
  • Shape design optimization of shell structure is implemented on a basis of integrated framework of geometric modeling and finite element analysis which is constructed on the geometrically exact shell theory. This shell theory enables more accurate and robust analysis for complicated shell structures, and it fits for the nature of B-spline function which Is popular modeling scheme in CAD field. Shape of laminated composite shells is optimized through genetic algorithm and sequential linear programming, because there ire numerous optima for various configurations, constraints, and searching paths. Sequential adaptation of global and local optimization makes the process more efficient. Two different optimized results of laminated composite shell structures to minimize strain energy are shown for different layup sequence.

  • PDF

A Study of method to apply MANET Protocol for Route Optimization in Nested Mobile Network (Nested Mobile Network상의 Route Optimization을 위한 MANET Protocol 적용 방안 연구)

  • Choi, Seung-Won;Kim, Sang-Bok;Kim, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.269-272
    • /
    • 2005
  • 무선 네트워크 이동성 기술에 대한 연구가 수년간 진행되어 오면서 Mobile Network에 PAN(Personal Area Network)과 유사한 형태의 Nested Mobile Network에 대한 관심이 높아지고 있으며, 이러한 Nested Mobile Network에서의 경로최적화(Route Optimization : RO) 기술에 대한 연구가 활발하게 진행되고 있다. NEMO(NEtwork MObility)의 RO를 위해 제안된 논문 중에 ORC(Optimized Route Cache Protocol)에 대한 제안이 있었다.[1] NEMO Basic Support가 표준안으로 채택되면서 연구 대상에서 거론되지 않고 있지만, 복잡한 이동성 기술인 Nested Mobile Network상의 RO를 위해 다시 검토해 볼 수 있을 것이다. 또한 동일 저자에 의해 제안된 Nested Mobile Network 내부에 Ad-hoc Routing 알고리즘인 OLSR(Optimized Link State Routing Protocol)을 적용한 제안이 발표되었다.[2] 본 논문에서는 ORC와 Nested Mobile Network상의 OLSR Scheme을 적용하여 RO를 위한 방안을 제안하고자 한다.

  • PDF

An Adaptive Rate-Distortion Optimization Method for H.264 Video Codec (H.264를 위한 적응적인 비트-왜곡 최적화 방법)

  • Oh, Kwan-Jung;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • Several video coding standards, such as MPEG-4 and H.263, have been investigated to reduce the resulting number of bits while pursuing the maximum video quality. The recent video coding standard, H.264, provides higher coding efficiency than previous coding standards by using the mode decision scheme. For mode decision, H.264 chooses the best macroblock mode among the several candidates using Lagrangian cost function which reflects both the rate and the distortion. H.264 employs only one rate-distortion optimization (RDO) model for all macroblocks. Since the characteristics of each macroblock is different, each macroblock should have its own RDO model. In this paper, we propose an adaptive rate-distortion optimization algorithm for H.264. We regulate the Lagrangian multiplier considering the picture type and characteristics of each macroblock.

  • PDF

A Study on Algorithm and Hardware Structure of the Improved Rate-Distortion Optimization for JPEG2000 (JPEG2000을 위한 개선된 비율-왜곡 최적화 알고리즘 및 하드웨어 구조에 관한 연구)

  • Moon, Hyoung-Jin;Park, Sung-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.999-1002
    • /
    • 2005
  • This paper describes an improved Rate-Distortion Optimization Algorithm for JPEG2000. We proposed a new optimal constant setting method and rate allocation method to reduce execution time of the rate control. And we proposed hardware structure of the improved R-D opti. algorithm. Consequently, improved Rate-Distortion Optimization algorithm is faster than conventional rate control scheme in JPEG2000 standard and have nearly same performance.

  • PDF