• Title/Summary/Keyword: optimization procedure

Search Result 1,155, Processing Time 0.033 seconds

Development of Optimization Program for the Building Energy Efficiency Improvement (건물에너지 효율향상을 위한 최적화 툴의 개발)

  • Han, Soo-Gon;Ihm, Pyeong-Chan;Huh, Jung-Ho;Kwon, Han-Sol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • This study develops an optimization program to use optimum design of building HVAC system reducing building energy use and cost. Doe20pt developed is an interface program between DOE2 and GenOpt to perform the optimization procedure more easily. The optimum results can be used to estimate the economical efficiency concerning the building management.

  • PDF

Optimization Analysis of Trajectory for Re-Entry Vehicle Using Global Orthogonal Polynomial

  • Lee Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1557-1566
    • /
    • 2006
  • We present a procedure for the application of global orthogonal polynomial into an atmospheric re-entry maneuvering problem. This trajectory optimization is imbedded in a family of canonically parameterized optimal control problem. The optimal control problem is transcribed to nonlinear programming via global orthogonal polynomial and is solved a sparse nonlinear optimization algorithm. We analyze the optimal trajectories with respect to the performance of re-entry maneuver.

Structural Analysis and Dynamic Design Optimization of a High Speed Multi-head Router Machine (다두 Router Machine 구조물의 경량 고강성화 최적설계)

  • 최영휴;장성현;하종식;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.902-907
    • /
    • 2004
  • In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.

  • PDF

Material Optimization of BIW for Minimizing Weight (경량화를 위한 BIW 소재 최적설계)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.16-22
    • /
    • 2013
  • In this study, we propose the method of optimally changing material of BIW for minimizing weight while satisfying vehicle requirements on static stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the linear polynomial regression (PR) model. Using the linear PR model, optimization is carried out an evolutionary algorithm (EA) that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 44.8% while satisfying all the design constraints.

Material Selection Optimization of A-Pillar and Package Tray Using RBFr Metamodel for Minimizing Weight (경량화를 위한 RBFr 메타모델 기반 A-필러와 패키지 트레이의 소재 선정 최적화)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, we propose the method of optimally selecting material of front pillar (A-pillar) and package tray for minimizing weight while satisfying vehicle requirements on static stiffness and dynamic stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness and dynamic stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the radial basis function regression (RBFr). Using the RBFr models, optimization is carried out an evolutionary algorithm that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 49.8% while satisfying all the design constraints.

Optimization procedure for parameter design using neural network (파라미터 설계에서 신경망을 이용한 최적화 방안)

  • Na, Myung-Whan;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.829-835
    • /
    • 2009
  • Parameter design is an approach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used the signal-to-noise ratio to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. However, there are difficulties in practical application, such as complexity and nonlinear relationships among quality characteristics and control factors (design factors), and interactions occurred among control factors. Neural networks have a learning capability and model free characteristics. There characteristics support neural networks as a competitive tool in processing multivariable input-output implementation. In this paper we propose a substantially simpler optimization procedure for parameter design using neural network. An example is illustrated to compare the difference between the Taguchi method and neural network method.

  • PDF

Parametric Optimization Procedure for Robust Flight Control System Design

  • Tunik, Anatol A.;Ryu, Hyeok;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.95-107
    • /
    • 2001
  • This paper is devoted to the parameter optimization of unmanned aerial vehicle's (UAV) flight control laws. Optimization procedure is based on the ideas of mixed $H_2/H_{\infty}$ control of multi-model plants. By using this approach, some partial $H_2$-terms defining the performance of nominal and parametrically perturbed Flight Control System (FCS) responses to deterministic command signals in stochastic atmosphere as well as $H_{\infty}$-terms defining robustness of the FCS can be incorporated in the composite cost function. Special penalty function imposed on the location of closed-loop system's poles keeps the speed of response and oscillatory properties for both nominal and perturbed FCS in reasonable limits. That is the reason why this procedure may provide reasonable trade-off between the performance and robustness of FCS that are very important especially for UAV. Its practical importance is illustrated by case studies of lateral and longitudinal control of small UAV.

  • PDF

Performance Comparison of GA, DE, PSO and SA Approaches in Enhancement of Total Transfer Capability using FACTS Devices

  • Chandrasekar, K.;Ramana, N.V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.493-500
    • /
    • 2012
  • In this paper the performance of meta-heuristics algorithms such as GA (Genetic Algorithm), DE (Differential Evolution), PSO (Particle Swarm Optimization) and SA (Simulated Annealing) for the problem of TTC enhancement using FACTS devices are compared. In addition to that in the assessment procedure of TTC two novel techniques are proposed. First the optimization algorithm which is used for TTC enhancement is simultaneously used for assessment of TTC. Second the power flow is done using Broyden - Shamanski method with Sherman - Morrison formula (BSS). The proposed approach is tested on WSCC 9 bus, IEEE 118 bus test systems and the results are compared with the conventional Repeated Power Flow (RPF) using Newton Raphson (NR) method which indicates that the proposed method provides better TTC enhancement and computational efficacy than the conventional procedure.

A Study on Acoustic Radiation Optimization of Vibrating Panel Using Genetic Algorithm (유전자 알고리즘을 이용한 판넬구조물의 구조음향 최적화에 관한 연구)

  • Jeon, Jin-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • Globally, customer appreciation and demand for quieter products has driven noise control engineers to develop efficient and quieter products in a relatively short time. In the vehicles and ship industry, noise has become an important attribute because of the competitive market and increasing customer awareness. Noise reduction is often achieved through structural modifications by typical approaches. In the present paper, author describes a fundamental study on optimum design of curvature. Bezier curve. and rib attachment to reduce noise from simple panel using a genetic algorithm(GA). The acoustic optimization procedure employed p-FEM for structural analysis, the Rayleigh integral method for acoustic analysis and the GA for searching optimum design. In the optimization procedure. the objective function to be minimized is the average sound power radiated from an objective structure over a given frequency range $0{\sim}300$ Hz.

Shape design for viscoelastic vibration isolators to minimize rotational stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.343-347
    • /
    • 2008
  • Design of shape for visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is frequently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs. ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape. where density of either 0 or 1 for finite elements is used for physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure will be presented for a mount of an air-conditioner compressor system and the effectiveness will be discussed.

  • PDF