• Title/Summary/Keyword: optimal temperature & pH

Search Result 1,364, Processing Time 0.034 seconds

Studies on the Simplified Hemagglutination Reaction to Pasteurella multocida and the Stabilization of Erythrocytes (Pasteurella multocida에 대(對)한 간이적혈구(簡易赤血球) 응집반응(凝集反應)과 적혈구(赤血球)의 안정화(安定化)에 관(關)한 연구(硏究))

  • Lee, Hak Cheul;Chung, Yung Gun;Kim, Kyo-Joon
    • Korean Journal of Veterinary Research
    • /
    • v.10 no.1
    • /
    • pp.11-23
    • /
    • 1970
  • Recently Carter(1952) reported the capsule antigens of Pasteurella multocida could be divided into four serological types A,B,C and D by means of precipitation tests. Subsequently he showed that the most sensitive for identification of these types involved the use of capsule substance adsorbed by erythrocytes in hemagglutination test. It may be somewhat difficult to conduct the hemagglutination test in small laboratory, because relatively large amounts of antisera and erythrocytes of the human O type are required for the test. A simple method for serological typing of P. multocida was the slide agglutination test employed by Little et al. (1943) and Namioka et al. (1962), but this method is still in controversy. The author tried adapting Carter's hemagglutination method to the slide method so called "micromethod technique", and studied on the stabilization of erythrocytes for use of slide hemagglutination to P. multocida although many invesigators reported the stabilization of erythrocytes. The results obtained are summarized as follows: 1. A simplified method (slide method) for capsule typing of the organism was developed by adapting Carter's hemagglutination reaction(tube method). Antibody-containing serum can be diluted serially on Boerner's microtest slide with capillary or serological pipetts with a considerable accuracy. The slide reaction can be carried out with case on the slide by adding $0.05m{\ell}$ of antigen-sensitized erythrocytes suspension diluted to one percent on $0.05m{\ell}$ of serially diluted antibody-containing sera, and the final result can be read after 60 minutes at the room temperature ($15^{\circ}C$). 2. It is difficult to determine superiority of inferiority between the slide method and the tube method on the pattern of the reaction of hemagglutination. 3. The pH range of 6.6 to 8.3 is optimal for the slide hemagglutination reaction. 4. The antigen-sensitization against erythrocytes at $37^{\circ}C$ is optimal for the slide hemagglutination. 5. Both the doses and concentration of antigen do not influence the antigen-adsorbing capacity of erythrocytes. 6. The reduction of antigen-sensitizing hours does not influence the antigen-adsorbing capacity of erythrocytes even 30 minutes. 7. The tannic acid treatment against formalinized and non-formalinized erythrocytes showed no effect on the reaction of hemagglutination. 8. The erythrocytes preserved at $4^{\circ}C$ in the ACD solution do not decrease the reactivity on the reaction of hemagglutination for 60 days, while they begin slight hemolysis 30 days after preserving. 9. The stable preparation of erythrocytes can be obtained by treating the cells at $37^{\circ}C$ for 20 hours with from 4 to 8 percent of formalin in saline or buffer. These cells can be preserved at $4^{\circ}C$ for more than 8 months experimented without hemolysis. With low concentration of formalin, the cells were not sufficiently stabilized resulting in the hemolysis after short period of preservation at $4^{\circ}C$. 10. The erythrocytes treated with 16 percent of formalin remain constantly or increase the reactivity for the reaction of hemagglutination. On the contrary, the cells treated with I to 8 percent of formalin decrease the reactivity. 11. There is no difference between nontreated fresh erythrocytes and the erythrocytes preserved in the ACD solution on the reactivity against the hemagglutination, and the erythrocytes treated with 16 percent of formalin showed the reactivity of higher level than that of the above two kinds of erythrocytes. 12. There is no difference between the saline and the isotonic buffer solution on the reaction of hemagglutination.

  • PDF

Study of Heating Methods for Optimal Taste and Swelling of Sea-cucumber (가열방법에 따른 해삼의 최대 팽윤 및 기호성 향상 연구)

  • Jung, Yeon-Hun;Yoo, Seung-Seok
    • Korean journal of food and cookery science
    • /
    • v.30 no.6
    • /
    • pp.670-678
    • /
    • 2014
  • The purpose of this study was to find the optimal swelling method and condition for seacucumber to improve its taste and texture to accomodate the rapid increase of consumption. Another purpose was to try to determine an easy way to soak dried sea-cucumber under different conditions, and identify the influence of swelling time on the texture of sea-cucumber, in order to reduce preparation time and provide basic data for easy handling. After boiling or steaming for six different periods including 5, 15, 30 and 60 minutes the texture of the sea-cucumbers were compared, For the additive test, the sea-cucumbers were boiling for 30 minutes period with 4 different additives and the textures were compared, Since the texture is an important characteristic of sea-cucumber, there are many variables that affect this property including the, drying and preservation methods. This study provides basic understanding of the influence of the heating method, time and temperature on the swelling of sea-cucumber for handy use at processing sites.

Development of fermentation·storage mode for kimchi refrigerator to maintain the best quality of kimchi during storage (김치저장 중 최적의 맛 유지를 위한 김치냉장고 발효·보관 모드의 개발)

  • Moon, Song Hee;Kim, Eun Ji;Kim, Eun Jeong;Chang, Hae Choon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • To maintain the best quality of kimchi during long-term storage, we developed a fermentation storage mode for the kimchi refrigerator. The optimal kimchi fermentation temperature was determined to be $6^{\circ}C$ with fermentation time of 4-7 days in winter and 3-5 days in spring and fall. Based on these results, the fermentation storage mode conditions were programmed to consist of a fermentation temperature of $6^{\circ}C$ and fermentation times of 111 h in winter and 58 h in spring/fall. When kimchi was stored under the developed fermentation storage mode conditions, the total acidity of kimchi was almost the same as that of the control kimchi (stored $-2-\;-1^{\circ}C$ for 12 weeks). However, the number of lactic acid bacteria (LAB) and Leuconostoc sp. in kimchi were higher ($10^1-10^2CFU/mL$) than those in the control kimchi during storage. In addition, kimchi fermented and stored under the fermentation storage mode clearly received higher scores for overall preference than the control kimchi.

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System (오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명)

  • Ahn, Joungpil;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

A Fibrinolytic Enzyme from the Medicinal Mushroom Cordyceps militaris

  • Kim Jae-Sung;Sapkota Kumar;Park Se-Eun;Choi Bong-Suk;Kim Seung;Hiep Nguyen Thi;Kim Chun-Sung;Choi Han-Seok;Kim Myung-Kon;Chun Hong-Sung;Park Yeal;Kim Sung-Jun
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.622-631
    • /
    • 2006
  • In this study we purified a fibrinolytic enzyme from Cordyceps militaris using a combination of ion-exchange chromatography on a DEAE Sephadex A-50 column, gel filtration chromatography on a Sephadex G-75 column, and FPLC on a HiLoad 16/60 Superdex 75 column. This purification protocol resulted in a 191.8-fold purification of the enzyme and a final yield of 12.9 %. The molecular mass of the purified enzyme was estimated to be 52 kDa by SDS-PAGE, fibrin-zymography, and gel filtration chromatography. The first 19 amino acid residues of the N-terminal sequence were ALTTQSNV THGLATISLRQ, which is similar to the subtilisin-like serine protease PR1J from Metarhizium anisopliae var. anisopliase. This enzyme is a neutral protease with an optimal reaction pH and temperature of 7.4 and $37^{\circ}C$, respectively. Results for the fibrinolysis pattern showed that the enzyme rapidly hydrolyzed the fibrin $\alpha$-chain followed by the $\gamma$-$\gamma$ chains. It also hydrolyzed the $\beta$-chain, but more slowly. The A$\alpha$, B$\beta$, and $\gamma$ chains of fibrinogen were also cleaved very rapidly. We found that enzyme activity was inhibited by $Cu^{2+}$ and $Co^{2+}$, but enhanced by the additions of $Ca^{2+}$ and $Mg^{2+}$ ions. Furthermore, fibrinolytic enzyme activity was potently inhibited by PMSF and APMSF. This enzyme exhibited a high specificity for the chymotrypsin substrate S-2586 indicating it's a chymotrypsin-like serine protease. The data we present suggest that the fibrinolytic enzyme derived from the edible and medicinal mushroom Cordyceps militaris has fibrin binding activity, which allows for the local activation of the fibrin degradation pathway.

Reaction Stability of the Recombinant Tyrosinase-CNK Originating from the Psychrophilic Marine Microorganism Candidatus Nitrosopumilus Koreensis (호냉성 균주 유래 재조합 티로시나아제 효소, tyrosinase-CNK의 반응 안정성 연구)

  • Choi, Yoo Rae;Do, Hyunsu;Jeong, Dawon;Park, Junetae;Choi, Yoo Seong
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Tyrosinases catalyze the hydroxylation of a monophenol (monophenolase activity) and the conversion of an o-diphenol to o-quinone (diphenolase activity), which are mainly involved in the modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (DOPA) and DOPA/DOPAquinone-derived intermolecular cross-linking. Previously, we obtained a slightly acidic and cold-active tyrosinase, tyrosinase-CNK, by our recombinant protein approach. The enzyme showed optimal activity at pH 6.0 and 20 ℃ with an abnormally high monophenolase/diphenolase activity ratio and still had approximately 50% activity compared with the highest activity even in ice water. Here, we investigated reaction stability of the recombinant tyrosinase-CNK as a psychrophilic enzyme. The enzyme showed remarkable thermal stability at 0 ℃ and the activity was well conserved in repeated freeze-thaw cycles. Although water-miscible organic solvent as reaction media caused the activity decrease of tyrosinase-CNK as expected, the enzyme activity was not additionally decreased with increased concentration in organic solvents such as ethanol and acetonitrile. Also, the enzyme showed high salt tolerance in chaotropic salts. It was remarkably considered that 2+ metal ions might inhibit the incorporation of Cu2+ into the active site. We expect that these results could be used to design tyrosinase-mediated enzymatic reaction at low temperature for the production of catechols through minimizing unwanted self-oxidation and enzyme inactivation.

Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb1 into Ginsenoside Rd from Panax ginseng

  • Renchinkhand, Gereltuya;Cho, Soo Hyun;Urgamal, Magsar;Park, Young W;Nam, Joong Hyeon;Bae, Hyung Churl;Song, Gyu Yong;Nam, Myoung Soo
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.735-742
    • /
    • 2017
  • This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ${\beta}$-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside ($Rb_1$). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside $Rb_1$ by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside $Rb_1$ into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ${\beta}$-glucosidase and ${\beta}$-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and $35^{\circ}C$ in hydrolysis of ginsenoside $Rb_1$. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside $Rb_1$ fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside $Rb_1$ significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ${\beta}$-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside $Rb_1$ and convert to Rd during fermentation of the ginseng. The ${\beta}$-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

Study on the Inoculation Augmentation of paecizomyces japonicus to the Silkworm, Bombyx mori, Using Dexamethasone (Dexamethasone을 이용한 누에(Bombyx mori)에 대한 동충하초균 (Paecilomyces japonicus)의 접종율 제고에 관한 연구)

  • 김길호;박영진;김용균;이영인
    • Korean journal of applied entomology
    • /
    • v.40 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Entomopathogenic fungus, Paecilomyces japonicus, has been commercially used as medicinal purpose . The silkworm, Bombyx mori, as an optimal host for the fungi, has been selected and used for the production of the fungal fruit bodies. In current method, newly molted fifth instal larvae should be exposed to the adverse stress environment of high temperature (3$0^{\circ}C$), high relative humidity ( 90%), and starvation for 24h for better fungal inoculation to the host insects. In this study, an alternative method using chemical agent, dexamethasone (DEX: an eicosanoid biosynthesis inhibitor), was tried to get the immunodepressive effect on the larvae to elevate the inoculation rate of the fungi to the silkworm without any harsh rearing environment. DEX (100$\mu\textrm{g}$) showed significantly synergistic effect on the hemocyte lethality of the fungus, and was effective to decrease cellular immune responses measured by the number of hemocyte microaggregation and phenoloxidase activity of the fifth instar larvae in response to the fungal injection. A detergent of 0.05% Triton-X was effective to increase the in- oculation rate of the fungi to the larvae and used in all fungal spraying solutions. Without any environ- mental stress treatment, only DEX (100$\mu\textrm{g}$) injection to the fifth instar larvae followed by the fungal spray was effective to get the inoculation rate equivalent to the current fungal spray method requiring harsh rearing environment. These results suggest that the inoculation of P. japonicus can be elevated by the help of DEX and that the silkworms use eicosanoids to elicit cellular immune response against fungal pathogen.

  • PDF

New Dioscin-Glycosidase Hydrolyzing Multi-Glycosides of Dioscin from Absidia Strain

  • Fu, Yao Yao;Yu, Hong Shan;Tang, Si Hui;Hu, Xiang Chun;Wang, Yuan Hao;Liu, Bing;Yu, Chen Xu;Jin, Feng Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1011-1017
    • /
    • 2010
  • A novel dioscin-glycosidase that specifically hydrolyzes multi-glycosides, such as 3-O-${\alpha}$-L-($1{\to}4$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, and ${\beta}$-D-glucoside, on diosgenin was isolated from the Absidia sp.d38 strain, purified, and characterized. The molecular mass of the new dioscin-glycosidase is about 55 kDa based on SDS-PAGE. The dioscin-glycosidase gradually hydrolyzes either 3-O-${\alpha}$-L-($1{\to}4$)-Rha or 3-O-${\alpha}$-L-($1{\to}2$)-Rha from dioscin into 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin, further rapidly hydrolyzes the other ${\alpha}$-L-Rha from 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin into the main intermediate products of 3-O-${\beta}$-D-Glc-diosgenin, and subsequently hydrolyzes these intermediate products into aglycone as the final product. The enzyme also gradually hydrolyzes 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, and ${\beta}$-D-glucoside from [3-O-${\alpha}$-L-($1{\to}4$)-Ara, 3-O-${\alpha}$-L-($1{\to}4$)-Rha]-${\beta}$-D-Glc-diosgenin into diosgenin as the final product, exhibiting significant differences from previously reported glycosidases. The optimal temperature and pH for the new dioscin-glycosidase is $40^{\circ}C$ and 5.0, respectively. Whereas the activity of the new dioscin-glycosidase was not affected by $Na^+$, $K^+$, and $Mg^{2+}$ ions, it was significantly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, and slightly affected by $Ca^{2+}$ ions.

Molecular and Biochemical Characteristics of ${\beta}$-Propeller Phytase from Marine Pseudomonas sp. BS10-3 and Its Potential Application for Animal Feed Additives

  • Nam, Seung-Jeung;Kim, Young-Ok;Ko, Tea-Kyung;Kang, Jin-Ku;Chun, Kwang-Hoon;Auh, Joong-Hyuck;Lee, Chul-Soon;Lee, In-Kyu;Park, Sunghoon;Oh, Byung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1413-1420
    • /
    • 2014
  • Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The ${\beta}$-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently. In this study, we cloned a novel BPP gene from a marine Pseudomonas sp. This Pseudomonas BPP gene (PsBPP) had low sequence identity with other known phytases and contained an extra internal repeat domain (residues 24-279) and a typical BPP domain (residues 280-634) at the C-terminus. Structure-based sequence alignment suggested that the N-terminal repeat domain did not possess the active-site residues, whereas the C-terminal BPP domain contained multiple calcium-binding sites, which provide a favorable electrostatic environment for substrate binding and catalytic activity. Thus, we overexpressed the BPP domain from Pseudomonas sp. to potentially hydrolyze insoluble mineral-phytate salts. Purified recombinant PsBPP required $Ca^{2+}$ or $Fe^{2+}$ for phytase activity, indicating that PsBPP hydrolyzes insoluble $Fe^{2+}$-phytate or $Ca^{2+}$-phytate salts. The optimal temperature and pH for the hydrolysis of $Ca^{2+}$-phytate by PsBPP were $50^{\circ}C$ and 6.0, respectively. Biochemical and kinetic studies clearly showed that PsBPP efficiently hydrolyzed $Ca^{2+}$-phytate salts and yielded myo-inositol 2,4,6-trisphosphate and three phosphate groups as final products. Finally, we showed that PsBPP was highly effective for hydrolyzing rice bran with high phytate content. Taken together, our results suggest that PsBPP has great potential in the animal feed industry for reducing phytates.