• Title/Summary/Keyword: optimal stiffness

Search Result 492, Processing Time 0.028 seconds

A Fundamental Study for a Dispersion Characteristics of Surface Waves on an Influence of Adjacent Structures (인접구조물의 영향에 의한 표면파 분산특성의 기초연구)

  • Cho, Mi-Ra;Cho, Sung-Ho;Kim, Bong-Chan;Kim, Suhk-Chol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.239-245
    • /
    • 2008
  • In this study, a fundamental-level study was performed to establish knowledge-base for the development of optimal surface-wave method for urban areas with adjacent structures. First, theoretical modelling was performed to investigate the influence of adjacent structures on dispersion characteristics of surface waves. Later, the geotechnical sites with a concrete model of adjacent structure and a real subway box structure were tested by surface-wave method to investigate the influence of adjacent structures. The major influencing factors of adjacent structures on surface-wave propagation were direct distance between measurement array and adjacent structure, stiffness contrast between layers and type of seismic source.

A Study on the Performance Improvement of High-Pylon Extradosed Bridge adopting Fatigue Loading Condition (국내 설계하중의 피로특성을 적용한 고주탑 엑스트라도즈드교의 성능개선에 관한 연구)

  • Lee, Young Jin;Shin, Seung Kyo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.137-148
    • /
    • 2010
  • This study proposes the optimal ratio of vertical load-carrying capacity (${\beta}$) by investigating structural performances and economic efficiency in the extradosed bridges. Without design standards for the extradosed bridge, Japanese design standards have been used domestically. For the design live load, DL24 is found to be more adequate than DB24. Using the DL24 load, parameter studies are carried out. The parameters are 'main tower height', 'main girder stiffness', and 'cable arrangement'. As a result, it is found that one side cable-stayed extradosed bridges are more economical than double side cable-stayed extradosed bridges. This study also shows that when the ratio of vertical load-carrying capacity(${\beta}$) is 30~50% in the extradosed bridge with the ratio of tower height to main span length 1/6, the extradosed bridge is most economical because of the cable stress less than the allowable stress.

Numerical Evaluation of Settlement Reducing Effect by Partial Reinforcement of Rock Fill (수치해석을 통한 암성토 부분보강의 침하억제 효과 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Han, Jin-Gyu ;Gu, Kyo-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.23-31
    • /
    • 2023
  • The escalating settlements observed in concrete slab tracks pose a significant challenge in Korea, raising concerns about their adverse impact on the safe operation of high-speed railways and the substantial costs involved in restoration. A primary contributor to these settlements is identified as the utilization of rock materials sourced from tunnel construction, incorporated into the lower subgrade without the requisite soil mixing to achieve an appropriate particle size distribution. This study employs numerical analysis to evaluate the efficacy of partial reinforcement in reducing settlements in rock-filled lower subgrades. Column-shaped reinforcement areas strategically positioned at regular intervals in the lower subgrade induce soil arching in the upper subgrade, leading to a concentration of soil loads on the reinforced areas and consequent settlement reduction. The analysis employs finite element methods to investigate the influence of the size, stiffness, and spacing of the reinforced areas on settlement reduction in the lower subgrade. The numerical results guide the formulation of an optimal design approach, proposing a method to determine the minimum spacing required for reinforcements to effectively limit settlements within acceptable bounds. This research contributes valuable insights into addressing the challenges associated with settlement in concrete slab tracks, offering a basis for informed decision-making in railway infrastructure management.

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

Optimum Design of Steel-Deck System for Two-Story Roads (2층도로용 강구조 덱 시스템의 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Kim, Hyun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.553-564
    • /
    • 1998
  • Recently, more and more steel-deck structural system for two story roads has been adopted as a solution against traffic congestion in urban area, mainly because of fast construction, reduced self-weight, higher stiffness and efficient erection compared to that of concrete decks. The main objective is to study on the unit-elective optimal type and proportioning of a rational steel-deck system for two story roads using an optimum design program specifically developed for steel-deck systems. The objective function for the optimization is formulated as a minimum cost design problem. The behavior and design constraints are formulated based on the ASD(Allowable Stress Design) criteria of the Korean Bridge Design Code. The optimum design program developed in this study consists of two steps - the first step for the optimization of the steel box or plate girder viaducts, and the second step for the optimum design of the steel-decks with closed or open ribs. A grid model is used as a structural analysis model for the optimization of the main girder system, while the analysis of the deck system is based on the Pelican-Esslinger method. The SQP(Sequential Quadratic Programming) is used as the optimization technique for the constrained optimization problem. By using a set of application examples, the rational type related to the optimized steel-deck system designs is investigated by comparing the cost effectiveness of each type. Based on the results of the investigation it may be concluded that the optimal linear box girder and deck system with closed ribs may be utilized as one of the most rational and economical viaducts in the construction of two-story roads.

  • PDF

An Example of Test on Differences of Pulse Waveform Characteristics at Cun, Guan and Chi (촌, 관, 척 위치의 맥파 특징 차이 검정에 대한 1례)

  • Lee, Jeon;Lee, Yu-Jung;Jeon, Young-Ju;Lee, Hae-Jung;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • Although the pulse diagnosis position, Guan is apart from Cun or Chi by only $10{\sim}20$ mm at most, traditional medical doctors applies different indent pressures and even they states different pulse images are felt at Cun, Guan and Chi, To support their clinical behaviors, in this study, we tested statistically whether there are differences in pulse waveform measured at these three positions with SphygmoCor system used world widely, A 30 years old female subject without any evidence of cardiovascular diseases was involved in this experiment. Radial pulse waves were recorded at three different positions on left lower arm 10 times at three positions-Cun, Guan and Chi. With ANOVA, we tested whether, among three different positions. there are any differences in 12 parameters of radial pulse waveform and in estimated AIx(Augmentation Index) as an arterial stiffness index extracted from radial pulse waveform. As results, differences in optimal indent pressure h0 were observed at different measuring positions(P<0.001) but not significantly different. And pulse pressure his were found to be different(Chi$22.60{\pm}3.06%,\;18.60{\pm}3.37%\;and\;26.4{\pm}5.02%$ respectively. Consequently. AIx at Gwan seems to be lowest and that at Chi seems to be highest. So. we assert the AIx at Chi is likely to be overestimated. In further studies. we want to examine what make differences in these parameters between measuring positions. And it also seems to be worthy to investigate the relationship between the depth of radial artery and AIx. And, ultimately, we need to determine the best measuring process including measuring position, hold-down pressure, signal quality validation and so on. so to achieve the optimal waveform which represents subject's health condition for both western medicine and traditional medicine.

  • PDF

Optimal Design for Weight Reduction of Rotorcraft Shaft System (회전익기의 축계 경량화를 위한 최적설계)

  • Kim, Jaeseung;Moon, Sanggon;Han, Jeongwoo;Lee, Geun-Ho;Kim, Min-Geun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.243-248
    • /
    • 2022
  • Weight optimization was performed for a rotorcraft shaft system using one-dimensional Euler-Bernoulli beam elements. Torsion, shaft support stiffness such as bearings, flange mass are all considered. To guarantee structural dynamic stability, eigenvalue analysis was performed to avoid critical speed and tooth mesh excitation form the gearbox. The weight optimization was performed by adjusting the thickness and radius while the length of the shaft was fixed, and the optimization process was divided into two stages. In the first, the weight is optimized with the torsional strength constraint. In the second, the difference between the primary mode of shaft and the critical speed is maximized so that the primary mode of the shaft can avoid the critical speed while the constraint on the torsional strength of the shaft is satisfied according to the standard for shaft system stability (AMC P 706-201, 1974). The proposed method was verified by comparing the results of the optimal design using the given one-dimensional beam elements with the stress results of the 3D finite element and the actual manufactured shaft.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Stability of Saturation Controllers for the Active Vibration Control of Linear Structures (선형 구조물의 능동 진동 제어를 위한 포화 제어기의 안정성)

  • Moon, Seok-Jun;Lim, Chae-Wook;Huh, Young-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.93-102
    • /
    • 2006
  • Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).