• 제목/요약/키워드: optimal stiffness

검색결과 492건 처리시간 0.028초

교량의 마찰형 지진격리장치 최적 인자 결정에 관한 연구 (A Study on Optimal Design Factors of Frictional bearing for Isolated Bridges)

  • 고현무;박관순;김동석;송현섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • To secure structures from strong earthquakes occurred recently and design economically seismic isolation design is spread rapidly. Specially, frictional isolator has superiority in application to bridge because it has many advantages. however, because isolator lies between pier and girder, responses of pier and superstructure contradict each other and we need to control the two responses to minimize the bridge's failure probability. In this study, frictional coefficient and horizontal stiffness is defined as design parameters of frictional isolator. the optimal design parameters of frictional isolator to minimize the bridge's failure probability are presented according to strength of earthquake and soil conditions. The result says that optimal friction coefficient is higher as the strength of earthquake is increased. And it is also higher as the soils are more flexible. But, optimal horizontal stiffness of rubber spring is insensitive to strength of earthquake and soil condition.

  • PDF

스마트 TMD의 최적설계를 위한 파라메터 연구 (Parameter Study for Optimal Design of Smart TMD)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

Influence of Bearing Stiffness on the Static Properties of a Planetary Gear System with Manufacturing Errors

  • Cheon, Gill-Jeong;Parker, Robert, G.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1978-1988
    • /
    • 2004
  • Hybrid finite element analysis was used to analyze the influence of bearing stiffness on the static properties of a planetary gear system with manufacturing errors. The effects of changes in stiffness were similar for most of the manufacturing errors. State variables were most affected by the stiffness of the planet ,bearings. Floating either the sun or carrier helps to equal load sharing and minimizes the critical tooth stress. The effects of a floating sun and carrier are similar, but it is not recommended that both float, because this can induce greater critical tooth stress. Planet bearing stiffness should be optimized. Both load sharing and critical tooth stress should be considered to determine optimal bearing stiffness.

정규화된 OEE를 이용한 지진격리장치의 이력거동 추정 (Estimation of Hysteretic Behaviors of a Seismic Isolator Using a Regularized Output Error Estimator)

  • 박현우;전영선;서정문
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.85-92
    • /
    • 2003
  • Hysteretic behaviors of a seismic isolator are identified by using the regularized output error estimator (OEE) based on the secant stiffness model. A proper regularity condition of tangent stiffness for the current OEE is proposed considering the regularity condition of Duhem hysteretic operator. The proposed regularity condition is defined by 12-norm of the tangent stiffness with respect to time. The secant stiffness model for the OEE is obtained by approximating the tangent stiffness under the proposed regularity condition by the secant stiffness at each time step. A least square method is employed to minimize the difference between the calculated response and measured response for the OEE. The regularity condition of the secant stiffness is utilized to alleviate ill-posedness of the OEE and to yield numerically stable solutions through the regularization technique. An optimal regularization factor determined by geometric mean scheme (GMS) is used to yield appropriate regularization effects on the OEE.

  • PDF

고속철도 콘크리트궤도 체결구 최적 수직강성 (Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway)

  • 양신추
    • 한국철도학회논문집
    • /
    • 제18권1호
    • /
    • pp.43-52
    • /
    • 2015
  • 궤도의 유지보수비와 전력소모비의 합이 최소로 되는 최적 체결구의 강성을 평가하여 가급적 이 값을 갖도록 체결구를 제작 및 유지관리하는 것은 국내 콘크리트궤도의 부설이 급격하게 증가하는 시점에서 철도의 경제성 제고 차원에서 중요한 과제라 할 수 있다. 본 연구에서는 콘크리트궤도에서 궤도의 유지보수비와 차량운행에 따른 전력소모비의 합을 최소로 하는 최적 체결구 강성을 평가하는 방법을 제시한 후, 국내 고속철도 콘크리트궤도에 맞는 최적 체결구 강성을 평가하였다. 체결구 강성에 따른 궤도 유지보수비를 합리적으로 평가하기 위하여 콘크리트궤도에 적합한 체결구 강성에 따른 궤도손상모델을 제시하였으며, 궤도손상에 따른 궤도 유지보수비 상관관계를 도출하였다. 윤중 계산 시 고도화된 수치해석적 기법을 적용하여 각 궤도구성품의 거동특성이 반영될 수 있도록 함으로써 체결구 강성에 따른 윤중변동을 보다 정확하게 평가할 수 있도록 하였다.

단일 아웃리거 구조시스템의 최적위치에 미치는 구조요소의 영향에 대한 비교분석 (Comparative Analysis on Influence of Structure Elements on Optimal Location of One-Outrigger System)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.22-32
    • /
    • 2015
  • 본 연구는 MIDAS-Gen을 사용하여 초고층건물에서 단일 아웃리거 구조의 최적위치에 미치는 구조요소의 영향에 대하여 비교분석하고자 하였다. 본 연구에서는 구조해석의 변수로 아웃리거 위치와 전단벽, 아웃리거, 아웃리거와 연결된 외곽기둥, 아웃리거에 연결되지 않은 프레임과 같은 주요한 구조요소의 강성을 설정하였다. 초고층건물에서 단일 아웃리거 구조의 최적위치를 탐색하기 위하여 80층 건물의 최상층에 발생한 수평변위를 고찰하였다. 본 연구 결과로부터 아웃리거의 위치, 전단벽, 아웃리거, 아웃리거와 연결된 외곽기둥, 아웃리거와 연결되지 않은 프레임과 같은 주요한 구조요소의 강성은 단일의 아웃리거 최적 위치에 영향을 주는 것으로 나타났다. 그리고 본 연구 결과는 초고층건물에서 단일의 아웃리거 최적위치를 탐색하기 위한 구조설계 데이터를 취득하는 데 매우 유용할 것으로 기대된다.

기존의 엔진룸을 이용한 신규 개발 디젤 엔진의 지지계 결정에 관한 연구 (A Study on the Decision of the Mount for the Newly Developed Diesel Engine using the Existing Engine Room)

  • 김규철;김주연;안상호
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.75-85
    • /
    • 1998
  • This paper presents the procedures and technique of the decision on the decision on the mount in a diesel engine development newly. To assess the vibration chara- cteristics of the engine plus transmission, their inertia moments are calculated for three engine versions. i.e., NA(Naturally Aspirated), TC(Turbocharged) and TCI(Turbocharged and Intercooled). These data are used to determine the mount layout and stiffness values affecting the noise quality of an engine as well as a vehicle. The main purpose of this paper is to design the mount rubber having the optimal stiffness characteristics through the investigation of the calculation results and the mount conditions when an engine is installed in a vehicle using the existing engine mount room. Thus, this paper describes the optimal mount positions, rubber stiffnesses, natural frequency, mode shapes and so on using ADAMS program to apply the newly developed engines to three different vehicles.

  • PDF

골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석 (Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures)

  • 이한주;김지연;한승백;남경연;김호수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계 (An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate)

  • 장창두;하윤석;조영천;신광복
    • 한국철도학회논문집
    • /
    • 제6권3호
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.