• Title/Summary/Keyword: optimal stage of embryos

Search Result 53, Processing Time 0.026 seconds

Effects of Glucose on the Cleavage and Further Development of Early Bovine Embryos (Glucose가 소 초기배의 분할 및 발육에 미치는 영향)

  • 노상호;이병천;황우석
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • This study was conducted to compare the insemination time of bovine oocytes and determine the effects of glucose(1.5 mM) on the development of bovine embryos at early cleavage stage. Oocytes were matured for 24 h, followed by exposure to sperm and cultured in modified Tyrode's media drops or with bovine oviduct epithelial cell monolayer prepared in TCM199(BOECM). Insemination time and culture system were varied in each experiment. In experiment 1, to investigate the developmental capacity of bovine embryos after different time of exposure to sperm, bovine ova and sperm were co-incubated for 18, 30 or 54 h, respectively. The development to blastocysts of 30 and 54 h insemination groups were significantly higher(P<0.05) than 18 h group, and in case of blastocysts of cleaved embryos, 30 h group were significantly higher(P<0.05) than other groups. In experiment 2, we investigated the effect of glucose on early bovine embryos. After 18 h insemination, in vitro fertilized oocytes were separated following 3 groups ; G+0, C+24 and C+48. Oocytes of G+0 group were cultured in glucose added Tyrode's medium after fertilization, oocytes in C+24 and C+48 groups were cultured in glucose free Tyrode's medium after fertilization. After 24 h culture, G+24 group was moved to glucose added medium. All oocytes of 3 groups were moved to BOECM after 48 h culture. The rates of cleavage and development to blastocysts in G+0 group were significantly lower than other groups. In experiment 3, we determined the effects of glucose exposure from 8 to 20 h after insemination on the cleavage and development of oocytes. The oocytes in glucose added group had high capacity of cleavage and further development. This study shows that in bovine oocytes, the optimal exposure to sperm is 30 h and glucose exposure to bovine one-cell embryos is detrimental to their first cleavage and further development in vitro but there has no evidence of detrimental effect of glucose(1.5 mM) exposure to bovine embryos over the two-cell stage in vitro.

  • PDF

Effect of Conditioned Medium of Human Endothelial Cell Line(tHUE-2 cell) on In Vitro Development of Mouse 1-cell Embryos In Vitro Fertilized (체내 수정된 Mouse 1-세포배의 체외발생에 미치는 혈관내피세포주(tHUE-2세포) 배양액의 영향)

  • ;;;Y. Mitsui
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 1995
  • Culture medium (ASF-301) of tHUE-2 cell, human endothelial cell line, and culture medium of these cells (conditioned medium : CM) which affect embryonic development of in vivo fertilized 1-cell embryos of mouse were examined. Two-cell stage block of mouse embryos was overicomed in ASF-301 and CM without EDTA, which usually added in basic medium (modified Whitten Medium: MWM, control) to overcome the 2-cell stage block. The developmental rates of embryos to the blastocyst stage were significantly increased in MWM containing 12.5% of growth factors added to ASF-301 (10mg/ $\ell$ transferrin, 1mg/$\ell$ insulin, 0.01mg/$\ell$ EGF) than those of 100% addition and control, 78.0% vs 20.8 and 52.3%, respectively (P<0.05), but the growth factors was not affected the hatching rate of blastocyst. Using ASF-301 or CM which was not treated, embryonic development into the blastocyst and hatched blastocyst stages were not affected. However, proportions of embryonic development into the blastocyst and hatched blastocyst stages were significantly higher in dilution (ASF-301 1:10; CM 1:3~1:6) than those in control (P,0.05). In ASF-301 dialyzed M.W.<10000 dialysis membrane, the developmental rate upto the hatched blastocyst stage was significantly increased, compared to ASF-301 which was not dialyzed (P<0.05), and hatching rate of blastocyst of these group was singnificantly increased than those in MWM (P<0.05). Compared to CM which was not dialyzed, however, in dialyzed CM was significantly decreased, compared to untreated CM (P<0.05), especially any hatched blastocyst was not appeared. As a result of these experiments indicated that a kind or porper treatment such as a dilution of complex synthetic cell culture medium and conditioned medium, and that a optimal concentration of growth factors are usuful for embryo cultrue in vitro.

  • PDF

Effects of Different Culture Conditions on In Vitro Production of Bovine Embryos (체외배양 조건이 소 체외수정란의 생산에 미치는 효과)

  • 조성근;노규진;이정규;이효종;최상용
    • Journal of Embryo Transfer
    • /
    • v.15 no.3
    • /
    • pp.271-277
    • /
    • 2000
  • This study was conducted to establish the optimal culture conditions for in vitro production of bovine embryos derived from slaughter house ovaries. Cumulus-oocyte- complexes (COCs) collected by aspiration from follicles of 2~7 mm in diameter were matured in Ham's F-10 medium supplemented with 0.01 $\mu\textrm{g}$/m1 epidermal growth factor (EGF) at 39$^{\circ}C$ in a humidified atmosphere of 5% $CO_2$in air. After 24 hrs of culture, the oocytes were co-cultured with epididymal sperm selected off by Percoll-density gradient in TALP medium for 24 hrs. The presumptive zygotes were cultured in HECM-6 medium for 3 d post-insemination, and followed by cultured in TCM199 medium until 7 to 10d post-insemination. The cultures were compared of their cleavage and development into later stage in culture medium by additions of different protein sources (PVA, BSA and BCS) and by different embryo density. The rates of cleavage and development rates into blastocyst were not significantly (P<0.05) different among the culture media containing with BSA (75.0% and 40.5%), BCS (76.7% and 38.0%) and PVA (72.5% and 42.2%), respectively. Significantly (P<0.05) higher blastocysts rates were obtained in culturing of 30 and 40 embryos in each 50$\mu$l droplets of culture medium than in 5, 10 and 20 embryos. These results indicate that the optimal density of embryos is 30~40 embryos in a 50$\mu$l droplet of culture medium. Furthermore there is no effect of different protein sources on early embryonic development.

  • PDF

Culture Conditions for Improving Manipulation Efficiency of Rat Embryo (랫드 배아 조작 효율 향상을 위한 배양 조건)

  • Ji Min Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • Rats are one of the most widely used animals in biomedical sciences because their metabolism and physiology are comparable to humans. In recent years, gene-targeted models have been developed using various animal species utilizing engineered nucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas). It has recently become possible to efficiently transfect CRISPR/Cas into embryos via electroporation. However, electroporation can damage fertilized eggs; therefore, it is important to determine the optimal embryo culture conditions. A standardized approach for routine and reproducible rat transgenesis will render rat models more accessible for research. We performed experiments to obtain rat embryos with efficient superovulation and synchronization, and to investigate the appropriate medium conditions for pronuclear stage embryos subjected to electroporation stimulation for the introduction of engineered nuclease.

Studies on the Effects of Body Fluids on the Developmental Physiology of Early Preimplantation Embryos. I. Effect of Serum on In Vitro Development of 1- and 2-Cell Mouse Embryos (체액이 초기배의 발생생리에 미치는 효과에 관한 연구. I. 생쥐 1- 및 2-세포배의 체외발생에서 배양액과 단백질원의 효과)

  • 정구민;임경순
    • Journal of Embryo Transfer
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • In vitro developmental ability of early preimplantation monse embryos was shown to be depend on the embryonic stages, media and snpplements and their interaction(Experiment 1). The development of I-cell embryos were more promoted in the complex medinm(Ham's Fl0) than in the simple one(m-KRB), but that of 2-cell embryos showed the reverse effect. The bovine serum albumin(BSA) as a medium snpplement more promoted the development of I- and 2-cell embryos, compared with human fetal cord serum(HCS). On the other hand, the harmful effect of HCS was especially shown on the early cleavage in the embryonic development of the two stages. The effect of serum, in the respect of interaction between media and snpplements. was also more significantly appeared in m-KRB than Ham's Fl0. In the experiment 2, when the harmful effect of HCS was compared with that of fetal bovine serum(FBS), the former more promoted the development of l - and 2-cell embryos than the latter. The effect of HCS was more significantly shown in the development of I-cell than that of 2-cell embryos. Conclusively, as I- and 2-cell embryos were different in the requirements for the in vitro development. the optimal medium and supplement have to be selected for each embryonic stage. It is also respected to the better result if it take into consideration into the kinds of sera when serum is used for culture of early preimplantation embryos.

  • PDF

Mass Production of Calla Lily(Zantedeschia spp. Southern Light) by the Immature Zygotic Embryo Culture (유색칼라(Zantedeschia spp. Southern Light) 미숙배 배양에 의한 다량증식)

  • 고정애;최소라;김현순
    • Korean Journal of Plant Resources
    • /
    • v.16 no.2
    • /
    • pp.160-167
    • /
    • 2003
  • In order to investigate the effects of developmental stage of embryos and plant growth regulators on mass production of Zantedeschia spp. Southern Light, immature zygotic embryos of Zantedeschia spp. Southern Light were cultured on Murashige and Skoog(1962) basal media or containing 2,4-D, NAA and BA. Globular embryos did not grow on any of the 2,4-D, NAA and BA combinations. The most suitable stage of immature zygotic embryo culture on the induction callus and multiple shoot was at early cotyledonary embryo stage, and at this stage of embryos were germinated up to 87.5%. The whitish watery callus and yellowish compact nodular callus produced on all 2,4-D, NAA and BA media. The best combination for inducing embryogenic callus was 0.5 mgL NAA and 1.0 mg/L BA. Whitish watery calli have been subcultured for more than 8 months and have retained their producing ability, Plant regeneration was only obtained by direct shoot development and yellowish compact nodular calli. Abundant plantlets were regenerated from cotyledonary stage of embryo culture on MS medium supplemented with 0.5 mg/L NAA and 1.0 mg/L BA. Supplementation of the media with 10% coconut water showed as the best concentration for plant differentiation from direct developed of shoots. The number of regenerated plants from one embryo could be seperated 25-35s plantlets. All yellowish compact callus-derived plantlets were transferred to pots containing a mixture of vermiculite, perlite and sand(1:1;1 v/v) and 100% of divided plantlets were phenotypically normal.

Optimization of Embryo Density and the Volume of Culture Medium for an Improvement of Mouse Parthenogenetic Embryo Development

  • Roh Sangho;Choi Young-Joo;Min Byung-Moo
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.145-147
    • /
    • 2005
  • Autocrine or paracrine mediators released by the early embryo are implicated in the support of embryonic development. Their mechanisms and optimal embryo density in the medium, however, are uncertain. This study was conducted to establish the optimal embryo density and culture medium volume in mouse parthenogenetic embryo culture. In experiment 1, culture of parthenogenetirally activated oocytes at a concentration of $2{\~}4$ embryos/${\mu}L$ significantly improved development to the blastoryst stage ($72{\%}{\leq}$) compared with culture at the lower ($0.2{\~}1$e mbryos/${\mu}L,\;0\~37.5\%$) and the higher ($5{\~}6$ embryos/${\mu}L,\;30\~53\%$) concentration for 120 h when the oocytes were cultured in a 5 ${\mu}L$ drop under mineral oil In experiment 2, the embryos cultured at a concentration of $2{\~}4$ embryos/${\mu}L$ in a 10 ${\mu}L$ drop ($81.1{\%}$) showed significantly higher blastocyst rates than those in a 5 ${\mu}L$ drop ($68.5{\%}$). This study optimizes in vitro culture condition by modifying embryo density and the volume of culture medium It may give appropriate level of autocrine and/or paracrine factors to enhance viability and subsequent normal development of mouse parthenogenetic embryos in vitro.

In Vitro Development of Nuclear Transplantation Bovine Embryos Using In Vitro Fertilized Embryos of Korean Native Heifers (한우 체외수정란을 이용한 핵 이식배의 체외발달에 관한 연구)

  • 박충생;공일근;노규진;이효종;최상용
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.113-119
    • /
    • 1994
  • To improve nuclear transplantation(NT) efficiency and to produce a large scale genetically identical cloned calves, examined the in vitro development capacity after co-culture of bovine oviductal epithelial cells (BOEC) and granulosa cells in TCM-199 supplemented with 10% fetal calf serum (FCS) with early bovine embryos derived from in vitro matured fertilized(IVM-IVF) oocyte. In addition, the age dependence of IVM oocyte on electro-stimulation and the effective electric voltage on in ivtro development of bovine NT embryos were examined. The results obtained were summerized as follows; 1. The cleavage rates of IVM-IVF bovine embryos in co-culture with bovine oviductal epithelial cells and granulosa cells were not significantly different(P<0.05), but the developmental rate into morula and blastocyst stage were different showing 38.3 and 20.2%, respectively. 2. The activation (82.5%) and development in vitro(8.6%) into later embryo stages of the aging oocytes of 32 hours post-maturation (hpm) were significantly higher than those of 24 hpm at direct current (DC) voltage of 1.5kV/cm, 60$\mu$sec pulse duration and 1 pulse time. 3. The fusion rates of NT eggs of 32 hpm following to different DC voltages from range 0.75 to 1.5kV/cm were not differ, but the developmental rate into morula and blastocyst stages at DC voltages of 0.75 and 1.0kV/cm were higher(11.4 and 12.6%, respectively) than those of 1.5kV/cm(0%). From these results, it can be suggested the optimal culture system for in vitro culture of IVM-IVF bovine embryos is a co-culture system with BOEC in TCM-199 supplemented 10% FCS. The effective time and the DC voltage for activation, electrofusion and in vitro development of NT embryos derived from IVM-IVF bovine embryo are 32hpm and 0.75~1.0kV/cm. But to improve NT efficiency, the advanced research (cell cycle synchronization, micromanipulation, culture system, etc.) is needed.

  • PDF

Production and Transfer of In Vitro fertilized Hanwoo Embryos with Serum-free Media

  • Yoon, Do-Joong;Kim, Gye-Woong;Kim, Kon-Joong;Park, Byung-Kwon;Cui, Xiang-Shun;Kim, Nam-Hyung;Lee, Jong-Wan
    • Journal of Embryo Transfer
    • /
    • v.24 no.4
    • /
    • pp.281-287
    • /
    • 2009
  • As a simple and economical method for in vitro produced embryos, we have used BSA instead of serum for the production and embryo transfer of Hanwoo in vitro fertilized (IVF) embryos and obtained the following results: 1) When using serum (FBS; fetal bovine serum) or BSA-containing culture media as the initial culture media for immature oocytes, it is regarded as inappropriate to add only BSA to the culture solutions from maturation of the immature oocytes to development stage culture, but serum still needs be added though there is no significant difference in the concentration, with a change from 5% to 10%. 2) The results of culturing IVF embryos after development (4 cell stage) in the Medium199 solutions containing BSA instead of serum (FBS) showed that 0.3% BSA concentration is not optimal and 0.5% or higher BSA concentration has no significant difference among 0.5%, 0.7%, 1% and 2% (p > 0.05). 3) The post-freezing survival ratio after development in 5% FBS-Medium199 showed that 1% BSA concentration of the culture solution is the most suitable in the BSA concentrations of 0.3% (51%), 0.5% (67%), 0.7% (69%), 1% (77%) and 2% (75%). 4) The pregnancy rates of the transplanted fresh(not frozen) blastocyst had no significant concentration dependency (p > 0.5), and the average pregnancy rate was 63.8%. 14% of overweight calves were found among the calves given birth to by the transfer of IVF blastocysts cultured in the serum-added culture solution, but none was found in the experimental groups in which BSA was added instead of serum.

In Vitro Development of Porcine Parthenogenetic Embryos under the Oil-free Culture System

  • Park, Sang-Kyu;Choi, Young-Ju;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.259-262
    • /
    • 2010
  • Optimization of the preimplantation mammalian embryo culture condition was widely focused on refining medium composition under the name of chemically defined media. However, recent research revealed that the alteration of physical environment can be a crucial factor to a successful embryo development. In this study, under the same embryo density, a novel culture device named oil-free micro tube culture (MTC) system was evaluated using porcine parthenogenetic embryos. The activated oocytes were placed into the 0.2 ml thin-wall flat cap PCR tube and cultured to the blastocyst stage. As a preliminary step, embryo density and culture medium volume were optimized under a standard drop culture system. The optimal embryo density range for in vitro culture was 0.5 embryos per ${\mu}l$ in $20\;{\mu}l$ drop (20.5%) and 1.0 embryos per ${\mu}l$ in $10\;{\mu}l$ drop (20.6%). Based on these results, we compared drop culture system and 'MTC' system in terms of the developmental rate to the blastocyst stage. In $20\;{\mu}l$ medium volume, the 'MTC' system showed similar blastocyst formation rate when compared with drop culture system (20.2% versus 20.5%, respectively) while the 'MTC' system showed lower blastocyst formation rate than drop culture system in $10\;{\mu}l$ one (12.7% versus 20.0%, respectively). Therefore the $20\;{\mu}l$ MTC system may be an alternative incubation system for short-distance embryo transport without carrying the $CO_2$ incubator and this provides novel embryo culture device to clinical veterinary embryologists.