• Title/Summary/Keyword: optimal sort sequences

Search Result 2, Processing Time 0.015 seconds

THE CHARACTERIZATION OF SORT SEQUENCES

  • Yun, MIn-Young
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.513-528
    • /
    • 1997
  • A sort sequence $S_n$ is a sequence of all unordered pairs of indices in $I_n\;=\;{1,\;2,v...,\;n}$. With a sort sequence Sn we assicuate a sorting algorithm ($AS_n$) to sort input set $X\;=\;{x_1,\;x_2,\;...,\;x_n}$ as follows. An execution of the algorithm performs pairwise comparisons of elements in the input set X as defined by the sort sequence $S_n$, except that the comparisons whose outcomes can be inferred from the outcomes of the previous comparisons are not performed. Let $X(S_n)$ denote the acverage number of comparisons required by the algorithm $AS_n$ assuming all input orderings are equally likely. Let $X^{\ast}(n)\;and\;X^{\circ}(n)$ denote the minimum and maximum value respectively of $X(S_n)$ over all sort sequences $S_n$. Exact determination of $X^{\ast}(n),\;X^{\circ}(n)$ and associated extremal sort sequenes seems difficult. Here, we obtain bounds on $X^{\ast}(n)\;and\;X^{\circ}(n)$.

An Adaptive Genetic Algorithm with a Fuzzy Logic Controller for Solving Sequencing Problems with Precedence Constraints (선행제약순서결정문제 해결을 위한 퍼지로직제어를 가진 적응형 유전알고리즘)

  • Yun, Young-Su
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.1-22
    • /
    • 2011
  • In this paper, we propose an adaptive genetic algorithm (aGA) approach for effectively solving the sequencing problem with precedence constraints (SPPC). For effective representation of the SPPC in the aGA approach, a new representation procedure, called the topological sort-based representation procedure, is used. The proposed aGA approach has an adaptive scheme using a fuzzy logic controller and adaptively regulates the rate of the crossover operator during the genetic search process. Experimental results using various types of the SPPC show that the proposed aGA approach outperforms conventional competing approaches. Finally the proposed aGA approach can be a good alternative for locating optimal solutions or sequences for various types of the SPPC.