• 제목/요약/키워드: optimal smoothing

Search Result 113, Processing Time 0.031 seconds

A Study of Digital Image Restoration for Modified PEM Gradient Algorithm (변형된 PEM 그래디언트 알고리즘을 이용한 디지털화상처리에 관한 연구)

  • Song, Min-Koo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.313-320
    • /
    • 2000
  • PEM algorithm cannot expend repeated algorithm, if penalty function is transcendental function. However, OSL algorithm has an advantage that repeated algorithm is easily derived, even though penalty function which has a complicated transcendental function. In spite of this advantage, this algorithm is restricted in convergence region of smoothing constant which increase penalized log-likelihood, so we cannot get the optimal image restoration because it cannot provide us with a various smoothing constant value for the digital image restoration. In this paper, in order to resolve the disadvantage of OSL algorithm, we would like to suggest the algorithm with smoothing constant enlarge the tolerance limit range of convergence and to find not only properties of its convergence but also usefulness of suggested algorithm through digital image simulation.

  • PDF

Development of a Material Mixing Method for Topology Optimization of PCB Substrate (PCB판의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Kim, Min-Sue;Hwang, Joon-Sung;Choi, Sang-Hyuk;Park, Jae-Yong;Lee, Byung-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • A material mixing method to obtain an optimal topology for a structure in a thermal environment was suggested. This method is based on Evolutionary Structural Optimization(ESO). The proposed material mixing method extends the ESO method to a mixing several materials for a structure in the multicriteria optimization of thermal flux and thermal stress. To do this, the multiobjective optimization technique was implemented. The overall efficiency of material usage was measured in terms of the combination of thermal stress levels and heat flux densities by using a combination strategy with weighting factors. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization. Optimal topologies having multiple thermal criteria for a printed circuit board(PCB) substrate were presented to illustrate validity of the suggested material mixing method. It was found that the suggested method works very well for the multicriteria topology optimization.

A Local Linear Kernel Estimator for Sparse Multinomial Data

  • Baek, Jangsun
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.515-529
    • /
    • 1998
  • Burman (1987) and Hall and Titterington (1987) studied kernel smoothing for sparse multinomial data in detail. Both of their estimators for cell probabilities are sparse asymptotic consistent under some restrictive conditions on the true cell probabilities. Dong and Simonoff (1994) adopted boundary kernels to relieve the restrictive conditions. We propose a local linear kernel estimator which is popular in nonparametric regression to estimate cell probabilities. No boundary adjustment is necessary for this estimator since it adapts automatically to estimation at the boundaries. It is shown that our estimator attains the optimal rate of convergence in mean sum of squared error under sparseness. Some simulation results and a real data application are presented to see the performance of the estimator.

  • PDF

A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map (무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Ko, Jung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.

A Study on the Improvement of Accuracy and Precision in the Vision-Based Surface-Strain Measurement (비전을 이용한 곡면변형률 측정의 정확도 및 정밀도 향상에 관한 연구)

  • 김두수;김형종
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.294-305
    • /
    • 1999
  • A vision-based surface-strain measurement system has been still improved since the authors devel-oped the first version of it. New algorithms for the subpixel measurement and surface smoothing are introduced to improve the accuracy and precision in the present study. The effects of these algorithms are investigated by error analysis. And the equations required to calculate 3D surface-strain of a shell element are derived from the shape function of a linear solid finite-element. The influences of external factors on the measurement error are also examined, and several trials are made to obtain possible optimal condition which may minimize the error.

  • PDF

A Simulation Study on Regularization Method for Generating Non-Destructive Depth Profiles from Angle-Resolved XPS Data

  • Ro, Chul-Un
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.707-714
    • /
    • 1995
  • Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonstrates its excellent utility for the complex depth profile system. It includes the stable restoration of the depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.

  • PDF

Decision function for optimal smoothing parameter of asymmetrically reweighted penalized least squares (Asymetrically reweighted penalized least squares에서 최적의 평활화 매개변수를 위한 결정함수)

  • Park, Aa-Ron;Park, Jun-Kyu;Ko, Dae-Young;Kim, Sun-Geum;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.500-506
    • /
    • 2019
  • In this study, we present a decision function of optimal smoothing parameter for baseline correction using Asymmetrically reweighted penalized least squares (arPLS). Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, an objective procedure is necessary to determine optimal parameter value for baseline correction. The proposed function is defined by modeling the median value of possible parameter range as the length and order of the background signal. The median value increases as the length of the signal increases and decreases as the degree of the signal increases. The simulated data produced a total of 112 signals combined for the 7 lengths of the signal, adding analytic signals and linear and quadratic, cubic and 4th order curve baseline respectively. According to the experimental results using simulated data with linear, quadratic, cubic and 4th order curved baseline, and real Raman spectra, we confirmed that the proposed function can be effectively applied to optimal parameter selection for baseline correction using arPLS.

An Improved Automatic Music Transcription Method Using TV-Filter and Optimal Note Combination (TV-필터와 최적 음표조합을 이용한 개선된 가변템포 음악채보방법)

  • Ju, Young-Ho;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.371-377
    • /
    • 2013
  • This paper proposes three methods for improving the accuracy of auto-music transcription considering with time-varying tempo from monophonic sound. The first one that uses TV(Total Variation) filter for smoothing the pitch data reduces the fragmentation in the pitch segmentation result. Also, the measure finding method that combines three different ways based on pitch and energy of sound data, respectively as well as based on rules produces more stable result. In addition the temporal result of note-length encoding is corrected in optimal way that the resulted encoding minimizes the sum of quantization error in a measure while the sum of note-lengths is equal to the number of beats. In the experiment with 16 children songs, we obtained the improved result in which measure finding was complete, the accuracy of encoding for note-length and pitch was about 91.3 and 86.7, respectively.

A Curve-Fitting Channel Estimation Method for OFDM System in a Time-Varying Frequency-Selective Channel (시변 주파수 선택적 채널에서 OFDM시스템을 위한 Curve-Fitting 채널추정 방법)

  • Oh Seong-Keun;Nam Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.49-58
    • /
    • 2006
  • In this paper, a curve-fitting channel estimation method is proposed for orthogonal frequency division multiplexing (OFDM) system in a time-varying frequency-selective fading channel. The method can greatly improve channel state information (CSI) estimation accuracy by performing smoothing and interpolation through consecutive curve-fitting processes in both time domain and frequency domain. It first evaluates least-squares (LS) estimates using pilot symbols and then the estimates are approximated to a polynomial with proper degree in the LS error sense, starting from one preferred domain in which pilots we densely distributed. Smoothing, interpolation, and prediction are performed subsequently to obtain CSI estimates for data transmission. The channel estimation processes are completed by smoothing and interpolating CSI estimates in the other domain once again using the channel estimates obtained in one domain. The performance of proposed method is influenced heavily on the time variation and frequency selectivity of channel and pilot arrangement. Hence, a proper degree of polynomial and an optimum approximation interval according to various system and channel conditions are required for curve-fitting. From extensive simulation results in various channel environments, we see that the proposed method performs better than the conventional methods including the optimal Wiener filtering method, in terms of the mean square error (MSE) and bit error rate (BER).

Moisture Content Prediction Model Development for Major Domestic Wood Species Using Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 국산 주요 수종의 섬유포화점 이하 함수율 예측 모델 개발)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Jun-Ho;Chung, Hyunwoo;Eom, Chang-Deuk;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.311-319
    • /
    • 2015
  • Near infrared (NIR) reflectance spectroscopy was employed to develop moisture content prediction model of pitch pine (Pinus rigida), red pine (Pinus densiflora), Korean pine (Pinus koraiensis), yellow poplar (Liriodendron tulipifera) wood below fiber saturation point. NIR reflectance spectra of specimens ranging from 1000 nm to 2400 nm were acquired after humidifying specimens to reach several equilibrium moisture contents. To determine the optimal moisture contents prediction model, 5 mathematical preprocessing methods (moving average (smoothing point: 3), baseline, standard normal variate (SNV), mean normalization, Savitzky-Golay $2^{nd}$ derivatives (polynomial order: 3, smoothing point: 11)) were applied to reflectance spectra of each specimen as 8 combinations. After finishing mathematical preprocessings, partial least squares (PLS) regression analysis was performed to each modified spectra. Consequently, the mathematical preprocessing methods deriving optimal moisture content prediction were 1) moving average/SNV for pitch pine and red pine, 2) moving average/SNV/Savitzky-golay $2^{nd}$ derivatives for Korean pine and yellow poplar. Every model contained three principal components.