• Title/Summary/Keyword: optimal seismic capacity distribution

Search Result 6, Processing Time 0.023 seconds

Optimal distribution of steel plate slit dampers for seismic retrofit of structures

  • Kim, Jinkoo;Kim, Minjung;Eldin, Mohamed Nour
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.473-484
    • /
    • 2017
  • In this study a seismic retrofit scheme for a building structure was presented using steel plate slit dampers. The energy dissipation capacity of the slit damper used in the retrofit was verified by cyclic loading test. Genetic algorithm was applied to find out the optimum locations of the slit dampers satisfying the target displacement. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. A simple damper distribution method was proposed using the capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of genetic algorithm. It was observed that the capacity-spectrum method combined with the simple damper distribution pattern leaded to satisfactory story-wise distribution of dampers compatible with the optimum solution obtained from genetic algorithm.

Comparison between uniform deformation method and Genetic Algorithm for optimizing mechanical properties of dampers

  • Mohammadi, Reza Karami;Mirjalaly, Maryam;Mirtaheri, Masoud;Nazeryan, Meissam
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Seismic retrofitting of existing buildings and design of earth-quake resistant buildings are important issues associated with earthquake-prone zones. Use of metallic-yielding dampers as an energy dissipation system is an acceptable method for controlling damages in structures and improving their seismic performance. In this study, the optimal distribution of dampers for reducing the seismic response of steel frames with multi-degrees freedom is presented utilizing the uniform distribution of deformations. This has been done in a way that, the final configuration of dampers in the frames lead to minimum weight while satisfying the performance criteria. It is shown that such a structure has an optimum seismic performance, in which the maximum structure capacity is used. Then the genetic algorithm which is an evolutionary optimization method is used for optimal arrangement of the steel dampers in the structure. In continuation for specifying the optimal accurate response, the local search algorithm based on the gradient concept has been selected. In this research the introduced optimization methods are used for optimal retrofitting in the moment-resisting frame with inelastic behavior and initial weakness in design. Ultimately the optimal configuration of dampers over the height of building specified and by comparing the results of the uniform deformation method with those of the genetic algorithm, the validity of the uniform deformation method in terms of accuracy, Time Speed Optimization and the simplicity of the theory have been proven.

Optimal Design of Linear Viscous Damping System for Vibration Control of Adjacent Building Structures (인접구조물의 진동제어를 위한 선형감쇠시스템의 최적설계)

  • Park, Kwan-Soon;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.85-100
    • /
    • 2006
  • This paper proposes an optimal design method of linear viscous dampers for the seismic performance of two adjacent structures with different heights. Accordingly, connection method using diagonal bracing between two floors and connection method between two structures are considered, and the effectiveness of the latter method is confirmed through the comparison of the frequency response functions with respect to damping capacity. Moreover, optimal damping to minimize the response of the adjacent structures in the frequency domain is found. The sensitivity of natural frequency and modal damping according to the damper capacity at each floor is obtained for the optimally designed system. From the sensitivity analysis, the modal damping is evaluated to be very sensitive to the damper installed at higher floor. Therefore, sensitivity-based damping distribution method is proposed. Diagonal bracing connection method, uniform distribution method and sensitivity-based distribution method are compared to each other in terms of seismic performance. The comparative results demonstrate that the proposed method is an effective seismic design method for the adjacent structures.

A Study on Seismic Probabilistic Safety Assessment for a Research Reactor (연구용 원자로에 대한 지진 확률론적 안전성 평가 연구)

  • Oh, Jinho;Kwag, Shinyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • Earthquake disasters that exceed the design criteria can pose significant threats to nuclear facilities. Seismic probabilistic safety assessment(PSA) is a probabilistic way to quantify such risks. Accordingly, seismic PSA has been applied to domestic and overseas nuclear power plants, and the safety of nuclear power plants was evaluated and prepared against earthquake hazards. However, there were few examples where seismic PSA was applied in case of a research reactor with a relatively small size compared to nuclear power plants. Therefore, in this study, seismic PSA technique was applied to actually completed research reactor to analyze its safety. Also, based on these results, the optimization study on the seismic capacity of the system constituting the research reactor was carried out. As a result, the possibility of damage to the core caused by the earthquake hazard was quantified in the research reactor and its safety was confirmed. The optimization study showed that the optimal seismic capacity distribution was obtained to ensure maximum safety at a low cost compared with the current design. These results, in the future, can expect to be used as a quantitative indicator to effectively improve the safety of the research reactor with respect to earthquakes.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

GA-Based Optimal Design for Vibration Control of Adjacent Structures with Linear Viscous Damping System (선형 점성 감쇠기가 장착된 인접구조물의 진동제어를 위한 유전자 알고리즘 기반 최적설계)

  • Ok, Seung-Yong;Kim, Dong-Seok;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.11-19
    • /
    • 2007
  • This paper proposes an optimal design method of distribution and capacities of linear viscous dampers for vibration control of two adjacent buildings. The previous researches have dealt with suboptimal design problem under the assumption that linear viscous dampers are distributed uniformly or proportionally to the sensitivity of the modal damping ratio according to floors, whereas this study deals with global optimization problem in which the damping capacities of each floor are independently selected as design parameters. For this purpose, genetic algorithm to effectively search multiple design variables in large searching domains is adopted and objective function leading to the global optimal solutions is established through the comparison of several optimal design values obtained from different objective functions with control performance and damping capacity. The effectiveness of the proposed method is investigated by comparing the control performance and total damping capacity designed by the proposed method with those of the previous method. In addition, the time history analyses are performed by using three historical earthquakes with different frequency contents, and the simulation results demonstrate that the proposed method is an effective seismic design method for the vibration control of the adjacent structures.