• Title/Summary/Keyword: optimal retrofitting

Search Result 25, Processing Time 0.032 seconds

Optimal synthesis for retrofitting heat exchanger network

  • Lee, In-Beum;Jung, Jae-Hak;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1259-1264
    • /
    • 1990
  • During the past two decades, a lot of researches have been done on the synthesis of grassroot heat exchanger networks(HEN). However, few have been dedicated to retrofit of existing heat exchanger networks, which usually use more amount of utilities (i.e. steam and/or cooling water) than the minimum requirements. This excess gives motivation of trades-off between energy saving and rearranging investment. In this paper, an algorithmic-evolutionary synthesis procedure for retrofitting heat exchanger networks is proposed. It consists of two stages. First, after the amount of maximum energy recovery(MER) is computed, a grass-root network featuring minimum number of units(MNU) is synthesized. In this stage, a systematic procedure of synthesizing MNU networks is presented. It is based upon the concept of pinch, from which networks are synthesized in a logical way by the heuristics verified by the pinch technology. In the second stage, since an initial feasible network is synthesized based on the pre-analysis result of MER and must-matches, an assignment problem between new and existing units is solved to minimize total required additional areas. After the existing units are assigned, the network can be improved by switching some units. For this purpose, an improvement problem is formulated and solved to utilize the areas of existing units as much as possible. An example is used to demonstrate the effectiveness of the proposed method.

  • PDF

Seismic performance comparison of existing public facilities strengthened with RC jacketing and steel bracing

  • Zu Irfan;Abdullah Abdullah;Azmeri Azmeri;Moch. Afiffuddin;Rifqi Irvansyah
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.43-56
    • /
    • 2023
  • Banda Aceh is one of the areas that sustains the most damage during a natural disaster because it contains so many houses, office buildings, public facilities, and schools. Public structures in coastal areas are highly susceptible to earthquakes, resulting in high casualties and property damage. Several public structures were reconstructed during the reconstruction and rehabilitation period. Because this building is located in an area with a high risk of earthquakes, its capacity must be analyzed initially. Additionally, history indicates that Aceh Province has been struck by numerous earthquakes, including the largest ever recorded in 1983 and the most recent earthquake with a magnitude of 9.3 SR on December 26, 2004. The city of Banda Aceh was devastated by this earthquake, which was followed by a tsunami. The possibility of a large earthquake in Banda Aceh City necessitates that the structures constructed there be resistant to seismic risk. This study's objective was to evaluate the seismic performance of the existing building by applying the method of strengthening the structure in the form of jacketing columns and the addition of steel bracing in order to estimate the performance of the structure using multiple ground motions. Therefore, several public buildings must be analyzed to determine the optimal seismic retrofitting technique.

A Study on Retrofitting BWTS using 3D Digital Design (3D Digital Design 기법을 이용한 BWTS 설치 설계 연구)

  • JEE, Jae-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.503-512
    • /
    • 2017
  • Over the past few years, as maritime trade and traffic were highly expanding, problem of invasive species via ballast water have been raised. In 1988, Canada and Australia had firstly experience that unexpected and hazardous species were observed on their own sea, they have issued the problem to MEPC under the IMO. At the end of many years of discussion, on the diplomatic conference in 13 Feb. 2004, "International Convention for the Control and Management of Ballast Water and Sediments of the Ship" was adopted. Requirements for entering into force of this Convention is that 30 countries ratify and world merchant marine fleet is more than 35% and BWM Convention will be effected after 12months from date satisfying conditions. With Finland ratifying the BWM Convention on 8 Sep. 2016, the fleet amounted to 35.1441% and ratification country became 52 countries. Therefore, after 12month, BWM Convention will be formally effected on 8 Sep. 2017. Ballast Water Treatment System is to be fitted in new ships as well as existing ships. Thus, there are concerns of ship owners to be suitably installed a variety typed BWTS in many kinds of vessels. As approaching for resolving these problems, engineering analysis was carried out research studies and detailed design to analyze to optimal installation space for retrofitting a BWTS using 3D Scanning method, targeting representative DWT 180K Bulk carrier of dry cargo vessels charged more 40% on worldwide vessel and mainly two type BWTS as electrolysis treatment type and ultra violet treatment type. Optimal design of 3D Scanning technology was applied to analyze four step process and the overall conclusion was described in this paper.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

Optimal sensor placement of retrofitted concrete slabs with nanoparticle strips using novel DECOMAC approach

  • Ali Faghfouri;Hamidreza Vosoughifar;Seyedehzeinab Hosseininejad
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.545-559
    • /
    • 2023
  • Nanoparticle strips (NPS) are widely used as external reinforcers for two-way reinforced concrete slabs. However, the Structural Health Monitoring (SHM) of these slabs is a very important issue and was evaluated in this study. This study has been done analytically and numerically to optimize the placement of sensors. The properties of slabs and carbon nanotubes as composite sheets were considered isotopic and orthotropic, respectively. The nonlinear Finite Element Method (FEM) approach and suitable optimal placement of sensor approach were developed as a new MATLAB toolbox called DECOMAC by the authors of this paper. The Suitable multi-objective function was considered in optimized processes based on distributed ECOMAC method. Some common concrete slabs in construction with different aspect ratios were considered as case studies. The dimension and distance of nano strips in retrofitting process were selected according to building codes. The results of Optimal Sensor Placement (OSP) by DECOMAC algorithm on un-retrofitted and retrofitted slabs were compared. The statistical analysis according to the Mann-Whitney criteria shows that there is a significant difference between them (mean P-value = 0.61).

Optimal location of a single through-bolt for efficient strengthening of CHS K-joints

  • Amr Fayed;Ali Hammad;Amr Shaat
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.61-75
    • /
    • 2024
  • Strengthening of hollow structural sections using through-bolts is a cost-effective and straightforward approach. It's a versatile method that can be applied during both design and service phases, serving as a non-disruptive and budget-friendly retrofitting solution. Existing research on axially loaded hollow sections T-joints has demonstrated that this technique can amplify the joint strength by 50%, where single bolt could enhance the strength of the joint by 35%. However, there's a gap in understanding their use for K-joints. As the behavior of K-joints is more complex, and they are widely existent in structures, this study aims to bridge that gap by conducting comprehensive parametric study using finite element analysis. Numerical investigation was conducted to evaluate the effect of through bolts on K-joints focusing on using single through bolt to achieve most of the strengthening effect. A full-scale parametric model was developed to investigate the effect of various geometric parameters of the joint. This study concluded the existence of optimal bolt location to achieve the highest strength gain for the joint. Moreover, a rigorous statistical analysis was conducted on the data to propose design equations to predict optimal bolt location and the corresponding strength gain implementing the verified by finite element models.

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.

Integrated Evaluation of Advanced Activated Sludge Processes Based on Mathematical Model and Fuzzy Inference (수학적 모델 및 퍼지 추론에 의한 고도 활성슬러지 공정의 통합 평가)

  • Kang, Dong-Wan;Kim, Hyo-Su;Kim, Ye-Jin;Choi, Su-Jung;Cha, Jae-Hwan;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • At present, the biological nutrient removal (BNR) process for removal of nitrogen and phosphorus is being constructing to keep pace with the reinforced standard of effluent quality and the traditional activated sludge process of preexistence is being promoting to retrofit. At the most case of retrofitting, processes are subjected to be under consideration as alternative BNR process for retrofitting. However, process evaluation methods are restricted to compare only treatment efficiency. Therefore, when BNR process apply, process evaluation was needed various method for treatment efficiency as well as sludge production and aeration cost, and all. In this study, the evaluation method of alternative process was suggested for the case for retrofitting S wastewater treatment plant which has been operated the standard activated sludge process. Three BNR processes for evaluation of proper alternatative process were selected and evaluated with suggested method. The selected $A^2$/O, VIP and DNR processes were evaluated using the mathematical model which is time and cost effective as well as gathered objective evaluation criteria. The evaluation between 5 individual criteria was possible including sludge production and energy efficiency as well as treatment performance. The objective final decision method for selection of optimal process was established through the fuzzy inference.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (I) Development of Lifetime Seismic Reliability Analysis S/W (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (I) 생애주기 지진신뢰성해석 프로그램 개발)

  • Lee, Kwang-Min;Choi, Eun-Soo;Cho, Hyo-Nam;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.965-976
    • /
    • 2006
  • A realistic lifetime seismic-reliability based approach is unavoidable to perform Life-Cycle Cost (LCC)-effective optimum design, maintenance, and retrofitting of structures against seismic risk. So far, though a number of researchers have proposed the LCC-based seismic design and retrofitting methodologies, most researchers have only focused on the methodological point. Accordingly, in most works, they have not been quantitatively considered critical factors such as the effects of seismic retrofit, maintenance, and environmental stressors on lifetime seismic reliability assessment of deteriorating structures. Thus, in this study, a systemic lifetime seismic reliability analysis methodology is proposed and a program HPYER-DRAIN2DX-DS is developed to perform the desired lifetime seismic reliability analysis. To demonstrate the applicability of the program, it is applied to an example bridge with or without seismic retrofit and maintenance strategies. From the numerical investigation, it may be positively stated that HYPER-DRAIN2DX-DS can be utilized as a useful numerical tool for LCC-effective optimum seismic design, maintenance, and retrofitting of bridges.

Response Characteristics of a Nonlinear MDOF Structure with Friction Dampers (마찰형 감쇠기가 설치된 다자유도 비선형 건물의 응답특성)

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.561-567
    • /
    • 2007
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

  • PDF