• Title/Summary/Keyword: optimal release time

Search Result 113, Processing Time 0.024 seconds

A Study on the Optimum Software Release with Uniform Testing Efforts (일정테스트노력 소프트웨어의 최적발행)

  • Che, Gyu-Shik;Kim, Jong-Ki;Chang, Won-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • The software reliability is defined, and not only the relations between testing time and reliability, but also the relation between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through evaluating the cost for each condition. Also, the release time is determined depending on the conditions of the first reliability, considering the specified reliability. the optimum release time is determined by simultaneously studying two optimum release time issues that determine both the cost related time and the specified reliability related time. And, each condition and limitation are studied. The trend of the optimum time is also examined.

Cost-Reliability Optimal Policies Based on Musa-Okumoto Logarithmic Poisson Execution Time Model (Musa-Okumoto 대수 포아송 실행시간 모형에 근거한 비용-신뢰성 최적정책)

  • 김대경
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.141-149
    • /
    • 1998
  • It is of great practical interest to decide when to stop testing a software system in the development phase and transfer it to the user. This decision problemcalled an optimal software release one is discussed to specify the a, pp.opriate release time. In almost all studies, the software reliability models used are nonphomogenous Poisson process(NHPP) model with bounded mean value function. HNPP models with unbounded mean value function are more suitable in practice because of the possibility of introducing new faults when correcting or modifying the software. We discuss optimal software release policies which minimize a total average software cost under the constraint of satisfying a software reliability requirement. A numerical example illustrates the results.

  • PDF

A Cost-Reliability Model for the Optimal Release Time of a Software System (결함유형에 따른 소프트웨어 신뢰도와 소프트웨어 상품화 최적 시기 전략)

  • Kim Yeong-Hwi;Lee Wan-Hyeong
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.135-150
    • /
    • 1990
  • This paper classifies faults into three types : simple, degenerated, and regenerated faults. This paper also deals with the characteristics of each type of fault to determine the software reliability based on the assumption; i. e., a system consisting of several subsystems (modules) which may be debugged simultaneously. For each type of fault, several formulas are developed to obtain the failure rate and the expected number of failures found during debugging. A model is developed based on the formulas of the failure rate and the expected number of failures to decide the optimal release time of a new software: minimizing the total cost with constraints restricting to the failure rate of each module in the software. By using this model, optimal release times are found for some cases; the eliminated faults are assumed simple faults only, regenerated faults only, simple and degenerated faults, and so on.

  • PDF

Optimal Reservoir Operation Using Goal Programming for Flood Season (Goal Programming을 이용한 홍수기 저수지 최적 운영)

  • Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • The purpose of multipurpose reservoir operation in flood season is to reduce the peak flood at a control point by utilizing flood control storage or to minimize flood damage by controlling release and release time. Therefore, the most important thing in reservoir operation for flood season is to determine the optimal release and release time. In this study, goal programming is used for the optimal reservoir operation in flood season. The goal programming minimizes a sum of deviation from the target value using linear programming or nonlinear programming to obtain the optimal alternative for the problem with more than two objectives. To analyze the applicability of goal programming, the historical storm data are utilized. The goal programming is applied to the reservoir system operation as well as single reservoir operation. Chungju reservoir is selected for single reservoir operation and Andong and Imha reservoirs are selected for reservoir system operation. The result of goal programming is compared with that of HEC-5. As a result, it was found that goal programming could maintain the reservoir level within flood control level at the end of a flood season and also maintain flood discharge within a design flood at a control point for each time step. The goal programming operation is different from the real operation in the sense that all inflows are assumed to be given in advance. However, flood at a control point can be reduced by calculating the optimal release and optimal release time using suitable constraints and flood forecasting system.

Determination of Optimal Software Release Time Based on Number of Errors (소프트웨어 오류개수에 근거한 최적 출시시점 결정)

  • Yoo, Young-Kwan;Lee, Jong-Moo;Park, Cheol-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.451-459
    • /
    • 2011
  • In this paper, a software release model is presented to determine the optimum testing time with consideration of software error type. The software errors are classified into two types, major and minor errors. The software testing is continued until the Nth major error is discovered and corrected. The total cost needed before and after testing time is modeled under nonhomogeneous Poisson error correction model. Numerical examples are presented to demonstrate the results.

  • PDF

A Study on Determining the Optimal Time to Launch of Software Considering Error Correction Time (오류 수정 시간을 고려한 소프트웨어 최적 출시 시점 결정 연구)

  • Ahn, Cheol-Hoon
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, the problem of determining the optimal time to market of software was studied using error correction time, an indicator of error correction difficulty. In particular, it was intended to modify the assumption that error detection time and correction time are independent in the software reliability growth model considering the existing error correction time, and to establish a general framework model that expresses the correlation between error detection time and correction time to determine when the software will be released. The results showed that it was important from an economic perspective to detect errors that took time to correct early in the test. It was concluded that it was very important to analyze the correlation between error detection time and error correction time in determining when to release the optimal software.

Optimization of Software Cost Model with Warranty and Delivery Delay Costs

  • Lee, Chong-Hyung;Jang, Kyu-Beom;Park, Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.697-704
    • /
    • 2005
  • Computer software has gradually become an indispensable elements in many aspects of our daily lives and an important factor in numerous systems. In recent years, it is not unusual that the software cost is more than the hardware cost in many situations. In addition to the costs of developing software, the repair cost resulting from the software failures are even more significant. In this paper, a cost model with warranty cost, time to remove each fault detected in the software system, and delivery delay cost is developed. We use a software reliability model based on non-homogeneous Poisson process (NHPP). We discuss the optimal release policies to minimize the expected total software cost. Numerical examples are provided to illustrate the results.

A cost-reliability model for the optimal release time of a software system

  • Lee, Won-Hyung;Kim, Yong-Whi
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.405-421
    • /
    • 1991
  • In this paper, faults existing in a software system is classified into three types; simple, degenerative and regenerative faults. The reliability functions and failure rates of both a software module and system which have a mixture of such faults are obtained and the expected number of failures in the system after time T is also derived. Using the formulas obtained, a cost-reliability model and an efficient algorithm for optimal software release time are proposed via nonlinear programming formulation ; minimizing the total test cost with constraints on the failure rates of each module. Application of this model to several cases are presented and it appears to be more realistic.

  • PDF

A Study on the Imperfect Debugging Effect on Release Time of Dedicated Develping Software (불완전디버깅이 주문형 개발소프트웨어의 인도시기에 미치는 영향 연구)

  • Che Gyu Shik
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • The software reliability growth model(SRGM) has been developed in order to estimate such reliability measures as remaining fault number, failure rate and reliability for the developing stage software. Almost of them assumed that the faults detected during testing were evetually removed. Namely, they have studied SRGM based on the assumption that the faults detected during testing were perfectly removed. The fault removing efficiency. however. IS imperfect and it is widely known as so in general. It is very difficult to remove detected fault perfectly because the fault detecting is not easy and new error may be introduced during debugging and correcting. Therefore, the fault detecting efficiency may influence the SRGM or cost of developing software. It is a very useful measure for the developing software. much helpful for the developer to evaluate the debugging efficiency, and, moreover, help to additional workloads necessary. Therefore. it is very important to evaluate the effect of imperfect dubugging in point of SRGM and cost. and may influence the optimal release time and operational budget. I extent and study the generally used reliability and cost models to the imperfect debugging range in this paper.

  • PDF

Optimal Release Policies of Software System with Scheduled Delivery Time (예정된 인도시기를 가진 Software시스템의 최적방출정책)

  • 정영배;신현재
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.29-32
    • /
    • 1986
  • A decision procedure to determine when computer software should be released after testing is described. This paper extends optimum release policies minimizing the total expected software cost with a scheduled software delivery time under reliability requirement constraint. Such cost considerations enable us to make a release decision as to when transfer a software system from testing phase to operational phase. The underlying model is software reliability growth model described by a nonhomogeneous poisson process. It is assumed that the penalty cost function due to delay for a scheduled software delivery time is linearly proportional to time. Numerical examples are shown to illustrate the results.

  • PDF