• Title/Summary/Keyword: optimal receiver

Search Result 382, Processing Time 0.024 seconds

Laser Power Beaming Based Wireless Power Transmission System for Multiple Charging of Long-distance Located Electric Vehicle (원거리 전기 자동차의 다중 충전을 위한 레이저 파워 빔 기반의 무선 전력 전송 시스템)

  • Eom, Jeongsook;Kim, Gunzung;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.379-392
    • /
    • 2016
  • This paper presents the design and simulation of a laser power beaming (LPB) system for an electric vehicle that establishes an optimal power transmission path based on the received signal strength. The LPB system is possible to transfer power from multiple transmitters to a single receiver according to the characteristics of the laser and the solar panel. When the laser beams of multiple transmitters aim at a solar panel at the same time, the received power is the sum of all energy at a solar panel. Our proposed LPB system consists of multiple transmitters and multiple receivers. The transmitter sends its power characteristics as optically coded pulses with a class 1 laser beam and powers as a high-intensity laser beam. By using the attenuated power level, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters. Throughout the simulation, we verified the possibility that different LPB receivers were achieved their required power by the optimal allocation of the transmitter among the various transmitters.

A study on the optimal geometrical placement of eLoran stations in Korea (eLoran 송신국 배치 최적화 방안 연구)

  • Lee, Chang-Bok;Shin, Mi-Young;Hwang, Sang-Wook;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • In the eLoran navigation system, the dominant deterioration factors of navigation accuracy are the TOA measurement errors on user receiver and the GDOP between the receiver and the transmitters. But if the ASF data measured at dLoran reference station are provided for users through the Loran data channel, it will be possible to correct the TOA measurement errors. The position accuracy can be determined by the DOP depending on the geometry of receiver-transmitters, and their optimal placement improves the navigation accuracy. In this study we determined the geometric placement in case of up to six stations, and evaluated the performance of position accuracy for the receiver-transmitter geometry set of eLoran stations. The proposed geometry of eLoran stations can be referred for the construction of eLoran infrastructure meeting the capability of HEA for maritime, and time/frequency users in Korea.

Research Trends on Physical Layers in Wireless Communications Using Machine Learning (무선 통신 물리 계층의 기계학습 활용 동향)

  • Choi, Y.H.;Kang, H.D.;Kim, D.Y.;Lee, J.H.;Park, Y.O.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • The fundamental problem of communication is that of transmitting a message from a source to a destination over a channel through the use of a transmitter and receiver. To derive a theoretically optimal solution, the transmitter and receiver can be divided into several processing blocks, with each component analyzed and optimized. The idea of machine learning (or deep learning) communications systems goes back to the original definition of the communi-cation problem, and optimizes the transmitter and receiver jointly. Although today's systems have been optimized over the last decades, and it seems difficult to compete with their performance, deep learning based communication is attractive owing to its simplicity and the fact that it can learn to communicate over any type of channel without the need for mathematical modeling or analysis.

An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector (접시형 태양열 집광시스템용 흡수기의 열손실 해석)

  • Ryu, S.Y.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

Design and Analysis of Switching Timing for High Power GPS Meaconing Jammer

  • Lee, Byung-Hyun;Oh, In-Geun;Kim, Sung-Il
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • The purpose of satellite navigation meaconing jamming is to make the target GPS receiver calculate false navigation by meaconing the received satellite signals. At this time, since the received and transmitted signals have the same frequency, the back-lobe reduction level of antenna should be -160 dB when the Effective Radiated Power (ERP) is 1 Watt (30 dBm). Therefore, meaconing jamming is impossible by merely reducing the back-lobe level of antenna when the transmitter and receiver are in proximity to each other. In general, the transmitter and receiver are isolated by the time division method to eliminate such transmission/reception interference. This paper studied the optimal switching timing between transmitting and receiving when isolating the time division transmission and reception for GPS meaconing jamming.

Design and Implementation of a GNSS Receiver Development Platform for Multi-band Signal Processing (다중대역 통합 신호처리 가능한 GNSS 수신기 개발 플랫폼 설계 및 구현)

  • Jinseok Kim;Sunyong Lee;Byeong Gyun Kim;Hung Seok Seo;Jongsun Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Global Navigation Satellite System (GNSS) receivers are becoming increasingly sophisticated, equipped with advanced features and precise specifications, thus demanding efficient and high-performance hardware platforms. This paper presents the design and implementation of a Field-Programmable Gate Array (FPGA)-based GNSS receiver development platform for multi-band signal processing. This platform utilizes a FPGA to provide a flexible and re-configurable hardware environment, enabling real-time signal processing, position determination, and handling of large-scale data. Integrated signal processing of L/S bands enhances the performance and functionality of GNSS receivers. Key components such as the RF frontend, signal processing modules, and power management are designed to ensure optimal signal reception and processing, supporting multiple GNSS. The developed hardware platform enables real-time signal processing and position determination, supporting multiple GNSS systems, thereby contributing to the advancement of GNSS development and research.

Receiver-Initiated MAC Protocol Using an Intermediate Node to Improve Performance (성능 향상을 위해 중간 노드를 이용한 개선된 수신자 주도의 MAC 프로토콜)

  • Kong, Joon-Ik;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1423-1430
    • /
    • 2016
  • The MAC protocols, which are classified into synchronous and asynchronous MAC protocol in the wireless sensor network, have actively studied. Especially, the asynchronous MAC protocol needs to research on the algorithm synchronizing between nodes, since each node independently operates in its own duty cycle. Typically, Receiver-Initiated MAC protocol is the algorithm synchronizing particular nodes by using beacon immediately transmitted by each node when it wakes up. However, the sender consumes unnecessary energy because it blankly waits until receiving the receiver's beacon, even if it does not know when the receiver's beacon is transmitted. In this paper, we propose the MAC protocol which can improve the performance by selecting an optimal node between a sender and a receiver to overcome the disadvantages. The simulation results show that the proposed algorithm improves energy efficiency and decreases average delay time than the conventional algorithm.

A Method for Optimal Power Assignment of the Transponder Input Carriers in the Multi-level & Multi-bandwidth System (Multi-level & Multi-bandwidth 시스템에서 위성중계기 입력반송파 전력의 최적 할당 기법)

  • 김병균;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1167-1176
    • /
    • 1995
  • This paper suggests a method for optimal power assignment of the satellite transponder input carriers in the Multi-level & Multi-bandwidth system. The interference and the noise effects analyzed for the optimal power assignment are intermodulation product caused by the nonlinear transponder characteristics, adjacent channel interference, co-channel interference, and thermal noise in the satellite link. The Fletcher- Powell algorithm is used to determine the optimal input carrier power. The performance criteria for optimal power assignment is classified into 4 categories according to the CNR of destination receiver earth station to meet the requirement for various satellite link environment. We have performed mathematical analysis of objective functions and their derivatives for use in the Fletcher-Powell algorithm, and presented various simulation results based on mathematical analysis. Since the satellite link, it is meaningful to model and analyze these effects in a unified manner and present the method for optimal power assignment of transponder input carriers.

  • PDF

Design and Implementation of a Navigation Filter for GPS Receiver (GPS 수신기를 위한 항법필터의 설계 및 구현)

  • Hong, Jin Seok;Jee, Gyu In;Lee, Jang Gyu;Oh, Jong Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.1 no.1
    • /
    • pp.11-22
    • /
    • 1997
  • Determination of position, velocity and time from the satellite signals is the central problem of the GPS receiver. Generally, GPS receiver uses least square method for navigation filter algorithm. The Kalman filter has known as an optimal linear estimator, which uses the knowledge of the system dynamics and the statistical characteristics of the system noises and measurement error. In this paper, we design an 8 state Kalman filter for GPS navigation and employ some techniques that can reduce computational burden, increase numerical stability, and improve filtering performance. To show its effectiveness, the designed filter is implemented in a GPS receiver and tested in real-time.

  • PDF

Flux Density Distribution of the Dish Solar Concentrator (KIERDISH II) (KIERDISH II 태양열 집광시스템의 플럭스밀도 분포)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoo, Seong-Yeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.11-18
    • /
    • 2004
  • A solar concentrator, named KIERDISH II, was built at KIER in order to investigate the feasibility of high temperature solar energy application system. The constructed concentrator is a dish type solar concentrator with a focal length of 4.68m and a diameter of 7.9m. To successfully operate KIERDISH II, optimal design of the absorber is very important and flux density distribution has to be known. The focal flux density distribution on the receiver was measured. We have observed the shape and size of flux images and evaluated percent power within radius. Flux density distribution is usually measured by a CCD(charge coupled device) camera and a radiometer. In this paper we present a flux mapping method to estimate the characteristic features of the flux density distribution in the focal region of solar concentrator. The minimum radius of receiver is found to be 0.15m and approximately 90% of the incident radiation is intercepted by receiver aperture.